Skip to main content
Log in

Interaction of EEG Rhythms in a Set to a Facial Expression

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Interactions of the θ, α, and β EEG rhythms were studied in a set to an emotional facial expression in 30 adult subjects. Electroencephalogram (EEG) data wee analyzed by wavelet transformation in the range 1–35 Hz. The mean and maximum wavelet transformation coefficients (WTC) were computed. Relationships between the β2/α1 and β2/α2 subranges were seen in subjects with erroneous recognition at the set testing stage, as detected using the mean WTC level. The β2/θ rhythm pair showed significant correlation coefficients both for the mean WTC level and the maximum WTC level, and for maximum WTC values in subjects without errors at the set formation stage. New data were obtained supporting the view that the thalamocortical and corticohippocampal systems are involved in supporting the process of recognizing facial expression during set formation and testing, while their interaction may provide a predictor for the success of visual recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. V. Astasheva, “Studies of the oscillator activity and interstructural interactions in the limbic system. Basic studies,” Biol. Nauki, 12, No. 4, 699–703 (2011).

    Google Scholar 

  2. E. A. Kostandov, N. S. Kurova, E. A. Cheremushkin, and I. A. Yakovenko, “The role of unconscious sets formed on the basis of the perception of real visual stimuli and illusory presentations in conscious cognitive activity,” Zh. Vyssh. Nerv. Deyat., 48, No. 3, 428–448 (1998).

    Google Scholar 

  3. D. N. Uznadze, “Experimental basis of set psychology,” in: Experimental Studies on Set Psychology, Academy of Sciences of the Georgian SSR Press, Tbilisi, (1958).

  4. I. A. Yakovenko and E. A. Cheremushkin, “Changes in two types of temporospatial organization of cerebral cortex potentials in humans at different stages of the set formed on illusory perceptions (Muller–Lyer illusion),” Zh. Vyssh. Nerv. Deyat., 52, No. 1, 104–108 (2002).

    Google Scholar 

  5. I. A. Yakovenko and E. A. Cheremushkin, “Interhemisphere asymmetry in the temporospatial organization of cerebral cortical potentials in different conditions of formation of a verbal set,” Zh. Vyssh. Nerv. Deyat., 54, No. 2, 216–224 (2004).

    Google Scholar 

  6. I. A. Yakovenko and E. A. Cheremushkin, “The relationship between two types of temporospatial organization of cerebral cortical potentials in humans on formation and action of a set to a visual nonverbal stimulus,” Zh. Vyssh. Nerv. Deyat., 50, No. 6, 913–920 (2000).

    Google Scholar 

  7. N. Axmacher, M. M. Henseler, O. Jensen, et al., “Cross-frequency coupling supports multi-item working memory in the human hippocampus,” Proc. Natl. Acad. Sci. USA, 107. No. 7, 3228–3233 (2009), https://doi.org/10.1073/pnas.0911531107.

    Article  Google Scholar 

  8. M. A. Belluscio, K. Mizuseki, R. Schmidt, et al., “Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus,” J. Neurosci., 32, No. 2, 423–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Bibbig, S. Middleton, C. Racca, et al., “Beta rhythms (15–20) generated by nonreciprocal communication in hippocampus,” J. Neurophysiol., 4, 2812–2823 (2007).

    Article  Google Scholar 

  10. N. R. Cooper, R. J. Croft, and S. J. J. Dominey, et al., “Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses,” Int. J. Psychophysiol., 47, 65–74 (2003).

  11. H. C. deMunk, S. I. Goncalves, R. Mammoliti, et al., “Interaction between different EEG frequency bands and their effect on alpha-fMRI correlation,” Neuroimage, 47, 69–76 (2009).

    Article  Google Scholar 

  12. P. Ekman and W. V. Friesen, Pictures of Facial Affect, Consult Psychologists Press, Palo Alto (CA) (1976).

    Google Scholar 

  13. A. K. Engel and P. Fries, “Beta-band oscillations -signalling the status quo?” Curr. Opin. Neurobiol., 20, 156–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. A. K. Engel, P. Fries, and W. Singer, “Dynamic predictions: Oscillations and synchrony in top-down processing,” Nature Rev. Neurosci., 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  15. B. Guntekin and E. Basar, “A review of brain oscillations in perception of faces and emotional pictures,” Neuropsychology, 58, 33–51 (2014).

    Article  Google Scholar 

  16. F. Kleberg, K. Kitajo, M. Kawasaki, and Y. Yamaguchi, “Ongoing theta oscillations predict encoding of subjective memory type,” Neurosci. Res., 83, 69–80 (2014).

    Article  PubMed  Google Scholar 

  17. W. Klimesch, S. Hanslmayr, P. Sauseng, et al., “Oscillatory EEG correlates of episodic trace decay,” Cereb. Cortex, 16, No. 2, 280–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. E. A. Kostandov and E. A. Cheremushkin, “Synchronization/desynchronization of cortical electrical activity in the theta and alpha ranges evoked by facial images during increased loading on working memory,” Neurosci. Behav. Physiol., 42, No. 5, 495–504 (2012).

    Article  Google Scholar 

  19. E. A. Kostandov, E. A. Cheremushkin, I. A. Yakovenko, and M. L. Ashkinazi, “The role of the context of cognitive activity in the recognition of facial emotional expressions,” Neurosci. Behav. Physiol., 42, No. 3, 293–301 (2012).

    Article  Google Scholar 

  20. E. A. Kostandov, “The role of top-down inhibitory control in providing flexibility to the processes underlying recognition of an emotional facial expression,” Neurosci. Behav. Physiol., 46, No. 2, 186–197 (2016).

    Article  Google Scholar 

  21. H. Liang, S. L. Bressler, M. Ding, et al., “Synchronized activity in prefrontal cortex during anticipation of visuomotor processing,” Neuroreport, 13, No. 16, 2011–2015 (2002).

    Article  PubMed  Google Scholar 

  22. R. R. Linas, A. A. Grace, and Y. Yarom, “In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10-to 50-Hz frequency range,” Proc. Natl. Acad. Sci. USA, 88, 897–901 (1991).

    Article  Google Scholar 

  23. V. V. Niculin and T. Brismar, “Phase synchronization between alpha and beta oscillation in the human electroencephalogram,” Neuroscience, 137, 647–657 (2006).

    Article  CAS  Google Scholar 

  24. V. V. Niculin, G. Nolte, and G. Curio, “Cross-frequency decomposition. A novel technique for studying interactions between neuronal oscillation with different frequencies,” Clin. Neurophysiol., 123, 1353–1360 (2012).

    Article  Google Scholar 

  25. E. I. Rodriguez-Martinez, C. I. Barriga-Paulino, M. A. Rojas-Benjumea, and C. M. Gomez, “Co-maturation of theta and low-beta rhythms during child development,” Brain Topogr., 28, 250–260 (2015).

    Article  PubMed  Google Scholar 

  26. A. K. Roopun, M. A. Kramer, L. M. Carrasedo, et al., “Temporal interaction between cortical rhythms,” Front. Neurosci., 2, No. 2, 145–154 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. J. Sarnthein, A. Morel, von Stein, and D. Jeanmonod, “Thalamic theta fields potentials and EEG: high thalamocortical coherence in patients with neurogenic pain, epilepsy and movement disorders,” Thalamus Relat. Syst., 2, 231–238 (2003).

    Article  Google Scholar 

  28. P. Sauseng, B. Griesmayr, R. Freuberger, and W. Klimesch, “Control mechanisms in working memory: A possible function of EEG theta oscillations,” Neurosci. Biobehav. Rev., 34, 1015–1022 (2010).

    Article  PubMed  Google Scholar 

  29. T. Schanze and R. Eckhorn, “Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications,” Int. J. Psychophysiol., 26, 171–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. P. Sehatpour, S. Molholm, T. H. Schwartz, et al., “A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing,” Proc. Natl. Acad. Sci. USA, 105, No. 11, 4399–4404 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. R. C. Sotero, “Topology, cross-frequency, and same-frequency band interactions shape the generation of phase-amplitude coupling in a neural mass model of a cortical column,” PLoS Comput. Biol. (2016), https://doi.org/10.1371/journal.pcbi.1005180.

  32. M. Steriade, “Grouping of brain rhythms in cortico-thalamic systems,” Neuroscience, 137, 1087–1106 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. P. J. Uhlhaas, C. Haenschel, D. Nikolić, and W. Singer, “The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia,” Schizophr. Bull., 34, No. 5, 927–943 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. I. A. Yakovenko, E. A. Cheremushkin, and M. K. Kozlov, “Changes in the beta rhythm on acquisition of a set to an emotional facial expression with lengthening of the time interval between the warning and trigger stimuli,” Neurosci. Behav. Physiol., 44, No. 9, 1031–1038 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Yakovenko.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 7, pp. 825–834, July, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, I.A., Petrenko, N.E., Cheremushkin, E.A. et al. Interaction of EEG Rhythms in a Set to a Facial Expression. Neurosci Behav Physi 49, 508–513 (2019). https://doi.org/10.1007/s11055-019-00763-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00763-7

Keywords

Navigation