Skip to main content

Advertisement

Log in

Methods and Approaches to Optimizing Control Using a Brain–Computer Interface System by Healthy Subjects and Patients with Motor Disorders

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review addresses the search for means of improving the operation of ‘brain–computer interface’ (BCI) systems, including those used in clinical practice. Training methods, particularly those improving motor imagery, will be discussed. The main themes covered here are: what to imagine and how to imagine it; means of using feedback; types of training promoting improvements in the concentration of attention on the task at hand (training based on observing movements, goal-directed motor therapy in neurorehabilitation, and body-and-mind therapy). In addition, data on the effects of psychological and social factors on the success in controlling BCI are also presented. Visuomotor coordination ability and concentration on the task are important, as are motivational factors, fear of incompetence, and creation of an optimum emotional context during BCI sessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, J., Lee, J. J., and Ahn, C. C., “An effi cient GP approach to recognizing cognitive tasks from fNIRS neural signals,” Sci. China Inf. Sci., 56, 1–7 (2013).

    Google Scholar 

  • An, K.-O., Kim J.-B., Song, W.-K., and Lee, I.-H., “Development of an emergency call system using a brain computer interface (BCI),” in: International Conference on Biomedical Robotics and Biomechatronics (2010), pp. 918–923.

  • Arrouët, C., Congedo, M., Marvie, J. E., Lamarche, F., Lécuyer, A., and Arnaldi, B., “Open-ViBE: a 3D platform for real-time neuroscience,” J. Neurother., 9, 3–25 (2005).

    Google Scholar 

  • Bar bero-Jimenez, A. and Grosse-Wentrup, M., “Biased feedback in brain–computer interfaces,” J. Neuroeng. Rehab., 7, 1–4 (2010).

    Google Scholar 

  • Bashashati, H., Rabab, K., Birch, E., and Bashashati, A., “Comparing different classifi ers in sensory motor brain computer interfaces,” PLoS One, 10, No. 6, e0129435 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Biryukova, E. V., Pavlova, O. G., and Kurganskaya, M. E., “Recovery of the motor functions of the arm using a wrist exoskeleton controlled by a brain–computer interface. A case of a patient with extensive damage to brain structures,” Fiziol. Cheloveka, 42, No. 1, 1–12 (2016).

    Google Scholar 

  • Bonnet, L., Lotte, F., and Lécuyer, A., “Two brains, one game: design and evaluation of a multi-user BCI video game based on motor imagery,” IEEE Trans. Comput. Intell, 5, 185–198 (2013).

    Google Scholar 

  • Broetz, D., Braun, C., Weber, C., Soekadar, S. R., Caria, A., and Birbaumer, N., “Combination of brain–computer interface training and goaldirected physical therapy in chronic stroke: a case report,” Neurorehabil. Neural. Repair, 24, 674–679 (2010).

    PubMed  Google Scholar 

  • Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T., Mellinger, J., Caria, A., Soekadar, S. R., Fourkas, A., and Birbaumer, N., “Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke,” Stroke, 39, 910–917 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Bushnell, M., Ceko, M., and Low, L., “Cognitive and emotional control of pain and its disruption in chronic pain,” Nat. Rev. Neurosci., 14, No. 7, 502–511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Callow, N. and Hardy, L., “The relationship between the use of kinaesthetic imagery and different visual imagery perspectives,” J. Sports Sci., 22, No. 2, 167–177 (2004).

    PubMed  Google Scholar 

  • Caria, A., Weber, C., Brötz, D., Ramos, A., Ticini, L. F., Gharabaghi, A., Braun, C., and Birbaumer, N., “Chronic stroke recovery after combined BCI training and physiotherapy: a case report,” Psychophysiology, 48, No. 4, 578–582 (2011).

    PubMed  Google Scholar 

  • Cassady, K., You, A., Doud, A., and He, B., “The impact of mind-body awareness training on the early learning of a brain–computer interface,” Technology (Singap. World Sci.), 2, No. 3, 254–260 (2014).

    Google Scholar 

  • Chernikova, L. A., Mokienko, O. A., and Frolov, A. A., “Motor imagery and its practical application,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 63, No. 2, 195–204 (2013).

    Google Scholar 

  • Cincotti, F., Kauhanen, L., Aloise, F., Palomäki, T., Caporusso, N., Jylänki, P., Mattia, D., Babiloni, F., Vanacker, G., Nuttin, M., Marciani, M., and Del R Millán, J., “Vibrotactile feedback for brain–computer interface operation,” Comput. Intell. Neurosci., 2007, Article 48937, (2007).

  • Cincotti, F., Mailla, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M. G., and Babiloni, F., “Non-invasive brain–computer interface system: towards its application as assistive technology,” Brain Res. Bull., 75, No. 6, 796–803 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Cohen, O., Koppel, M., Malach, R., and Friedman, D., “Controlling an avatar by thought using real-time fMRI,” J. Neural Eng., 11, No. 3, 035006 (2014).

    PubMed  Google Scholar 

  • Cui, X., Bryant, D., and Reiss, A., “NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation,” Neuroimage, 59, 2430–2437 (2012).

    PubMed  Google Scholar 

  • Davidson, R. and McEwen, B., “Social infl uences on neuroplasticity: stress and interventions to promote well-being,” Nat. Neurosci., 15, No. 5, 689–695 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, R., Kabat-Zinn, J., Schumacher, J., Rosenkranz, M., Muller, D., Santorelli, S. F., Urbanowski, F., Harrington, A., Bonus, K., and Sheridan, J. F., “Alterations in brain and immune function produced by mindfulness meditation,” Psychosom. Med., 65, No. 4, 564–570 (2003).

    PubMed  Google Scholar 

  • Eskandari, P. and Erfanian, A., “Improving the performance of brain–computer interface through meditation practicing,” Conf. Proc IEEE Eng. Med. Biol. Soc., 662–665 (2008).

  • Etnier, J. L. and Landers, D. M., “The infl uence of procedural variables on the effi cacy of mental practice,” Sport Psychol., 10, No. 1, 48–57 (1996).

    Google Scholar 

  • Falier, J., Vidaurre, C., Solis-Escalante, T., Neuper, C., and Scherer, R., “Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI,” IEEE Trans. Neural Syst. Rehabil. Eng., 20, 313–319 (2012).

    Google Scholar 

  • Faller, J., Scherer, R., Friedrich, E. V., Costa, U., Opisso, E., Medina, J., and Müller-Putz, G. R., “Non-motor tasks improve adaptive brain–computer interface performance in users with severe motor impairment,” Front. Neurosci., 8, 320 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Feltz, D. and Landers, D., “The effects of mental practice on motor skill learning and performance: a meta-analysis,” J. Sport Exerc. Psych., 5, 25–57 (1983).

    Google Scholar 

  • Friedrich, E., Scherer, R., and Neuper, C., “Long-term evaluation of a 4-class imagery-based brain–computer interface,” Clin. Neurophysiol., 124, No. 5, 916–927 (2013).

    PubMed  Google Scholar 

  • Frolov, A. A., Biryukova, E. V., Bobrov, P. D., Chernikova, L. A., Mokienko, O. A., Platonov, A. K., and Pryanichnikov, V. E., “A brain–computer interface: physiological requirements and clinical applications,” Informats. Izmeritel. Upravl. Sistemy, 11, No. 4, 44–56 (2003).

    Google Scholar 

  • Frolov, A. A., Biryukova, E. V., Bobrov, P. D., Mokienko, O. A., Platonov, A. K., Pryanichnikov, V. E., and Chernikova, L. A., “Principles of neurorehabilitation based on the use of a ‘brain–computer’ interface and biologically appropriate control of an exoskeleton,” Fiziol. Cheloveka, 39, No. 2, 99–113 (2013).

    CAS  PubMed  Google Scholar 

  • Frolov, A. A., Mokienko, O. A., Lyukmanov, R. Kh., Chernikova, L. A., Kotov, S. V., Turbina, L. G., Bobrov, P. D., Biryukova, E. V., Kondur, A. A., Ivanova, G. E., Staritsyn, A. N., Bushkova, Yu. V., Dzhalagoniya, I. Z., Kurganskaya, M. E., Pavlova, O. G., Budilin, S. Yu., Aziatskaya, G. A., Khizhnikova, A. E., Chervyakov, A. V., Luk’yanov, A. L., and Nadareishvili, G. G., “Preliminary results from a controlled study of the effectiveness of BCI-exoskeleton technology in poststroke paralysis of the hand,” Vestnik RGMU, No. 2, 17–25 (2016).

    Google Scholar 

  • Ganin, I. P. and Kaplan, A. Ya., “A brain–computer interface based on the P300 wave: presentation of complex “illumination + movement” stimuli,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 64, No. 1, 32–40 (2014).

    CAS  Google Scholar 

  • Gomez-Rodriguez, M., Grosse-Wentrup, M., Hill, J., Gharabaghi, A., Scholkopf, B., and Peters, J., “Towards brain-robot interfaces in stroke rehabilitation,” in: 2011 IEEE International Conference on Rehabilitation (2011).

  • Guger, C., Brain Computer Interface. Advanced Methods for the Estimation of Human Brain Activity and Connectivity, Applications to Rehabilitation Engineering, Patras, Greece (2008).

  • Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., and Edlinger, G., “How many people are able to control a P300-based brain–computer interface (BCI)?” Neurosci. Lett., 462, No. 1, 94–98 (2009).

    CAS  PubMed  Google Scholar 

  • Guger, C., Edlinger, G., Harkam, W., Niedermayer, L., and Pfurtscheller, G., “How many people are able to operate an EEG-based brain–computer interface (BCI)?” IEEE Trans. Neural. Syst. Rehabil. Eng., 11, No. 2, 145–147 (2003).

    CAS  PubMed  Google Scholar 

  • Halder, S., Agorastos, D., Veit, R., Hammer, E. M., Lee, S., Varkuti, B., Bogdan, M., Rosenstiel, W., Birbaumer, N., and Kübler, A., “Neural mechanisms of brain–computer interface control,” Neuroimage, 55, No. 4, 1779–1790 (2011).

    CAS  PubMed  Google Scholar 

  • Hammer, E. M., Halder, S., Blankertz, B., Sannelli, C., Dickhaus, T., Kleih, S., Müller, K. R., and Kübler, A., “Psychological predictors of SMR-BCI performance,” Biol. Psychol., 89, No. 1, 80–86 (2012).

    PubMed  Google Scholar 

  • Hammer, E. M., Kaufmann, T., Kleih, S., Blankertz, B., and Kübler, A., “Visuo-motor coordination ability predicts performance with brain–computer interfaces controlled by modulation of sensorimotor rhythms (SMR),” Front. Hum. Neurosci., 8, 574 (2014).

    PubMed  PubMed Central  Google Scholar 

  • He, B., Baxter, B., Edelman, B. J., Cline, C. C., and Wenjing, W. Y., “Noninvasive brain–computer interfaces based on sensorimotor rhythms,” Proc. IEEE, 103, No. 6, 907–925 (2015).

    Google Scholar 

  • Hinterberger, T., Smichdt, S., Neumann, N., Mellinger, J., Blankertz, B., Curio, G., and Birbaumer, N., “Brain–computer communication and slow cortical potentials,” IEEE Trans. Biomed., 51, 1011–1018 (2004).

    Google Scholar 

  • Hwang, H.-J., Kwon, K., and Im, C.-H., “Neurofeedback-based motor imagery training for brain–computer interface (BCI),” J. Neurosci., 179, 150–156 (2009).

    Google Scholar 

  • Irimia, D. and Poboroniuc, M., “Improved method to perform FES & BCI based rehabilitation,” in: Conference: E-Health and Bioengineering Conference (EHB) (2013).

  • Jackson, P., Lafl eur, M., Malouin, F., Richards, C., and Doyon, J., “Potential role of mental practice using motor imagery in neurologic rehabilitation,” Arch. Phys. Med. Rehabil., 82, No. 8, 1133–1141 (2001).

    CAS  PubMed  Google Scholar 

  • Jeunet, C., N’Kaoua, B., Subramanian, S., Hachet, M., and Lotte, F., “Predicting mental imagery-based BCI performance from personality, cognitive profi le and neurophysiological patterns,” PLoS One, 10, No. 12, e0143962 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Kabat-Zinn, J., Lipworth, L., and Burney, R., “The clinical use of mindfulness meditation for the self-regulation of chronic pain,” J. Behav. Med., 8, No. 2, 163–190 (1985).

    CAS  PubMed  Google Scholar 

  • Kaufmann, T., Schuk, S., Grünzinger, C., and Kübler, A., “Flashing characters with famous faces improves ERP-based brain–computer interface performance,” J. Neural Eng., 8, No. 5, 056016 (2011).

    CAS  PubMed  Google Scholar 

  • Kim, B. and Giacobbi, R., “The use of exercise-related mental imagery by middle-aged adults,” J. Imagery Res. Sport Phys. Activity, 4, No. 1, 1 (2009).

    Google Scholar 

  • Kim, T., Kim, S., and Lee, B., “Effects of action observational training plus brain–computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial,” Occup. Ther. Int., 23, No. 1, 39–47 (2016).

    PubMed  Google Scholar 

  • Kleih, S. C., Kaufmann, T., Hammer, E., Pisotta, L., Pichiorri, F., and Riccio, A., “Motivation and SMR-BCI: fear of failure affects BCI performance,” in: 5th International BCI Meeting, Monterey, California, USA (2013).

  • Konvalinka, L. and Roepstoiff, A., “The two-brain approach: how can mutually interacting brains teach us something about social interaction?,” Front. Hum. Neurosci., 6, 215 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Kubinger, K. and Ebenhöh, J., Arbeitshaltungen Kurze Testbatterie: Anspruchsniveau, Frustrationstoleranz, Leistungsmotivation, Impulsivität/Refl exivität, Swets and Zeitlinger, Frankfurt (1996) (cited in Hammer et al. (2014)).

  • Kübler, A., Kotchoubey, B., Hinterberger, T., Ghanayim, N., Perelmouter, J., and Schauer, M., “The thought translation device: a neurophysiological approach to communication in total motor paralysis,” Exp. Brain Res., 124, 223–232 (1999).

    PubMed  Google Scholar 

  • Kübler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., and Birbaumer, N., “Brain–computer communication: self-regulation of slow cortical potentials for verbal communication,” Arch. Phys. Med. Rehabil., 82, 1533–1539 (2001).

    PubMed  Google Scholar 

  • Kübler, A., Neumann, N., Wilhelm, B., Hinterberger, T., and Birbaumer, N., “Predictability of brain–computer communication J. Psychophysiol., 18, 121–129 (2004).

    Google Scholar 

  • Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T., Pawelzik, H., Schalk, G., McFarland, D., Birbaumer, N., and Wolpaw, J., “Patients with ALS can use sensorimotor rhythms to operate a brain–computer interface,” Neurology, 64, No. 10, 1775–1777 (2005).

    PubMed  Google Scholar 

  • Lakey, C., Berry, D., and Sellers, E., “Manipulating attention via mindfulness induction improves P300-based brain–computer interface performance.,” J. Neural Eng., 8, No. 2, 025019 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Lécuyer, A., Lotte, F., Reilly, R., Leeb, R., Hirose, M., and Slater, M., “Brain–computer interface, virtual reality video games,” IEEE Comput., 41, No. 10, 66–72 (2008).

    Google Scholar 

  • Leeb, R., Friedman, D., Scherer, R., Slater, M., and Pfurtscheller, G., “EEG-based ‘walking’ of a tetraplegic in virtual reality,” in: Maia Brain Computer Interfaces Workshop (2006), p. 43.

  • Lo, C., Chou, T., Penzel, T., Scammell, T., Strecker, R., and Stanley, H., “Common scale-invariant patterns of sleep-wake transitions across mammalian species,” Proc. Natl. Acad. Sci. USA, 101, 17545–17548 (2004a).

    CAS  PubMed  Google Scholar 

  • Lo, P.-C., Wu, S.-D., and Wu, Y.-C., “Meditation training enhances the efficacy of BCI system control,” in: International Conference on Networking, Sensing Control, Taipei, Taiwan, March 21–23, 2004b.

  • Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., and Zentgraf, K., “The embodied nature of motor imagery: the infl uence of posture and perspective,” Exp. Brain Res., 194, No. 2, 233–243 (2009).

    PubMed  Google Scholar 

  • Lotte, F., Larrue, F., and Mühl, C., “Flaws in current human training protocols for spontaneous brain–computer interfaces: lessons learned from instructional design,” Front. Hum. Neurosci., 7, 568 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Lutz, A., Dunne, J., and Davidson, R., “Meditation and the neuroscience of consciousness,” in: Cambridge Handbook of Consciousness (2007).

  • Lutz, A., Slagter, H., Dunne, J., and Davidson, R., “Attention regulation and monitoring in meditation,” Trends Cogn. Sci., 12, No. 4, 163– 169 (2008).

    PubMed  PubMed Central  Google Scholar 

  • MacCoon, D., Imel, Z., Rosenkranz, M., Sheftel, J., Weng, H., Sullivan, J., Bonus, K., Stoney, C., Salomons, T., Davidson, R., and Lutz, A., “The validation of an active control intervention for mindfulness based stress reduction (MBSR),” Behav. Res. Ther., 50, No. 1, 3–12 (2012).

    PubMed  Google Scholar 

  • MacIntyre, T. and Moran, A., “A qualitative investigation of meta-imagery processes and imagery direction among elite athletes,” J. Imagery Res. Sport Phys. Activity, 2, No. 1, 4 (2007).

    Google Scholar 

  • Mahmoudi, B. and Erfanian, A., “Electro-encephalogram based brain–computer interface: improved performance by mental practice and concentration skills,” Med. Bio. Eng. Comput., 44, 959–969 (2006).

    Google Scholar 

  • Mahoney, M. and Avener, M., “Psychology of the elite athlete: an exploratory study,” Cognitive Ther. Res., 2, 135–141 (1977).

    Google Scholar 

  • Manas, L. and Golosheykin, S., “Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions,” Int. J. Neurosci., 115, No. 6, 893–909 (2005).

    Google Scholar 

  • McFarland, D. and Sarnacki, W., “Effects of training pre-movement sensorimotor rhythms on behavioral performance,” J. Neural Eng., 12, No. 6 (2015).

  • McFarland, D., McCane, L., and Wolpaw, J., “EEG-based communication and control: short-term role of feedback,” IEEE Trans. Rehabil. Eng., 6, No. 1, 7–11 (1998).

    CAS  PubMed  Google Scholar 

  • McFarland, D., Sarnacki, W., and Wolpaw, J., “Electroencephalographic (EEG) control of three-dimensional movement,” J. Neural Eng., 7, 036007 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Mokienko, O. A., Bobrov, L. D., Chernikova, L. A., and Frolov, A. A., “A brain–computer interface based on motor imagery in the rehabilitation of patients with hemiparesis,” Byull. Sibirsk. Med., 12, No. 2, 30–35 (2013).

    Google Scholar 

  • Mokienko, O. A., Chernikova, L. A., and Frolov, A. A., “A brain–computer interface as a new technique for neurorehabilitation,” Ann. Klin. Eksperim. Nevrol., 5, No. 3, 46–52 (2011).

    Google Scholar 

  • Mulder, T., Hochstenbach, J. B. H., van Heuvelen, M. J. G., and den Otter, A. R., “Motor imagery: The relation between age and imagery capacity,” Hum. Mov. Sci., 26, No. 2, 203–211 (2007).

    PubMed  Google Scholar 

  • Müller-Putz, G. R., Daly, I., and Kaiser, V., “Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain–computer interface accuracy,” J. Neural Eng., 11, No. 3, 035011 (2014).

    PubMed  Google Scholar 

  • Neuper, C., Scherer, R., Reiner, M., and Pfurtscheller, G., “Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG,” Cogn. Brain Res., 25, No. 3, 668–677 (2005).

    Google Scholar 

  • Neuper, C., Schlügl, A., and Pfurtscheller, G. J., “Enhancement of leftright sensorimotor EEG differences during feedback-regulated motor imagery,” Clin. Neurophysiol., 16, No. 4, 373–382 (1999).

    CAS  Google Scholar 

  • Nicolas-Alonso, L. and, Gomez-Gil, J., “Brain computer interfaces, a review,” Sensors (Basel), 12, No. 2, 211–279 (2012).

    Google Scholar 

  • Nijboer, F., Birbaumer, N., and Kübler, A., “The infl uence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis – a longitudinal study,” Front. Neurosci., 4, 55 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Nijboer, F., Furdea, A., Gunst, I., Mellinger, J., McFarland, D. J., Birbaumer, N., and Kübler, A., “An auditory brain–computer interface (BCI),” J. Neurosci. Meth., 167, No. 1, 43–50 (2008).

    Google Scholar 

  • Nijholt, A., “BCI for games: a ‘state of the art’ survey,” in: Proceedings of the 7th International Conference on Entertainment Computing, Springer-Verlag, Berlin, Heidelberg (2009), pp. 225–228.

  • Oganesyan, V. V., Agapov, S. N., and Bulanov, V. A., “Comparison of the results of a brain–computer interface classifi er in a motor imagery recognition test,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 67, No. 4, 554–560 (2017).

    Google Scholar 

  • Ortner, R., Irimia, D. C., Scharinger, J., and Gager, C. A., “Motor imagery based brain–computer interface for stroke rehabilitation,” Stud. Health Technol. Inform., 181, 319–323 (2012).

    CAS  PubMed  Google Scholar 

  • Ortner, R., Irimia, D. C., Scharinger, J., and Guger, C. A., “Human computer confl uence in BCI for stroke rehabilitation,” in: Foundations of Augmented Cognition. Lecture Notes in Computer Science (2015), No. 9183, pp. 304–312.

  • Page, S., Levine, P., and Leonard, A., “Mental practice in chronic stroke, results of a randomized, placebo-controlled trial,” Stroke, 38, 1293–1297 (2007).

    PubMed  Google Scholar 

  • Payne, P. and Crane-Godreau, M. A., “The preparatory set: a novel approach to understanding stress, trauma, and the body-mind therapies,” Front. Hum. Neurosci., 9, 178 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Pfurtscheller, G., Graimann, B., Huggins, E., Levine, S., and Schah, L., “Spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery,” Clin. Neurophysiol., 114, No. 7, 1226–1236 (2003).

    CAS  PubMed  Google Scholar 

  • Pfurtscheller, G., Neuper, C., Pichler-Zalaudek, K., Edlinger, G., and da Silva, L. F. H., “Do brain oscillations of different frequencies indicate interaction between cortical areas?” Neurosci. Lett., 286, 66–68 (2000).

    CAS  PubMed  Google Scholar 

  • Prasad, G., Herman, P., and Coyle, D., “Applying a brain–computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study,” J. Neuroeng. Rehabil., 7, No. 1, 60 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Qing, T.-Y., Mindfulness Meditation Improves Brain–Computer Interface (BCI) Performance: Master Dissertation/Thesis, UTAR (2015).

  • Qing, T.-Y., Tan, L.-F., Mok, S.-Y., and Goh, S.-Y., “Effe ct of short term meditation on brain–computer interface performance,” J. Med. Bioeng., 4, No. 2, 135–138 (2015).

    Google Scholar 

  • Ramos-Murguialday, A., Broetz, D., Rea, M., Laer, L., Yilmaz, O., Brasil, F., Liberati, G., Curado, M., Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L., and Birbaumer, N., “Brain-machine interface in chronic stroke rehabilitation: a controlled study,” Ann. Neurol., 74, 100–108 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Ramos-Murguialday, A., Scharholz, M., Caggiano, V., Wildgruber, M., Caria, A., Hammer, E. A., Halder, S., and Birbaumer, N., “Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses,” PLoS One, 7, No. 10, e47048 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzolatti, G. and Sinigaglia, C., “Mirror neurons and motor intentionality,” Funct. Neurol., 22, 205–210 (2007).

    PubMed  Google Scholar 

  • Ron-Angevin, R., Díaz-Estrella, A., and Velasco-Alvarez, F., “A two-class brain computer interface to freely navigate through virtual worlds,” Biomed. Tech. (Berl.), 54, No. 3, 126–133 (2009).

    Google Scholar 

  • Saccoa, K., Caudaa, F., Cerliania, L., Matea, D., Ducab, S., and Geminiania, G. C., “Motor imagery of walking following training in locomo-tor attention. The effect of ‘the tango lesson’,” Neuroimage, 32, No. 3, 1441–1449 (2006).

    Google Scholar 

  • Scherer, R., Faller, J., Friedrich, E. V., Opisso, E., Costa, U., Kübler, A., and Müller-Putz, G., “Individually adapted imagery improves brain–computer interface performance in end-users with disability,” PLoS One, 10, No. 5, e0123727 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Schuster, C., Hilfiker, R., Amft, O., Scheidhauer, A., Andrews, B., Butler, J., Kischka, U., and Ettlin, T., “Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines,” BMC Medicine, 9, 75 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Schwartz, G., Davidson, R., and Goleman, D., “Patterning of cognitive and somatic processes in the self-regulation of anxiety: effects of meditation versus exercise,” Psychosom. Med., 40, No. 4, 321–328 (1978).

    CAS  PubMed  Google Scholar 

  • Sellers, E. and Donchin, E., “A P300-based brain–computer interface: Initial tests by ALS patients,” Clin. Neurophysiol., 117, No. 3, 538–548 (2006).

    PubMed  Google Scholar 

  • Sellers, E., Vaughan, T., and Wolpaw, J., “A brain–computer interface for long-term independent home use,” Amyotroph. Lateral. Scler., 11, No. 5, 449–455 (2010).

    PubMed  Google Scholar 

  • Sexton, C. A., “The overlooked potential for social factors to improve effectiveness of brain–computer interfaces,” Front. Syst. Neurosci., 9, 70 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Shenefelt, P., “Hypnosis, hypnoanalysis, and mindfulness meditation in dermatology,” in: Integrative Dermatology, Oxford University Press (2014).

  • Shepelev, I. E., Lazurenko, D. M., Kiroi, V. N., Aslanyan, E. V., Bakhtin, O. M., and Minyaeva, N. R., “A novel neural network approach to creating BCI based on EEG patterns for voluntary muscle movements,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 67, No. 4, 528–545 (2017).

    Google Scholar 

  • Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A., Piccione, F., and Birbaumer, N., “Brain–computer interface in stroke: a review of progress,” Clin. EEG Neurosci., 42, No. 4, 245–252 (2011).

    PubMed  Google Scholar 

  • Slomski, A., “Meditation promotes better sleep in older adults,” JAMA, 313, No. 16, 1609 (2015).

    Google Scholar 

  • Soekadar, S., Birbaumer, N., Slutzky, M., and Cohen, L., “Brain-machine interfaces in neurorehabilitation of stroke,” Stroke, 83, 172–179 (2015).

    Google Scholar 

  • Stavisky, S., Simeral, J., Kim, S., Centrella, K., Donoghue, J., and Hochberg, L., “Architecture of the Braingate neural interface system in the ongoing pilot clinical trial for individuals with tetraplegia,” in: Abstracts of the Society for Neuroscience Annual Meeting (Chicago, IL) (2009).

  • Tan, L.-F., Dienes, Z., Jansaric, A., and Goh, S.-Y., “Effect of mindfulness meditation on brain–computer interface performance,” Conscious. Cogn., 23, 12–21 (2014).

    PubMed  Google Scholar 

  • Tan, L.-F., Jansari, A., Keng, S.-L., and Goh, S.-Y., “Effect of mental training on BCI performance,” in: Human-Computer Interaction. Novel Interaction Methods and Techniques. HCI 2009. Lecture Notes in Computer Science, Jacko J. A. (ed.), Springer, Berlin, Heidelberg (2009), Vol. 5611.

  • Ungerleider, S. and Golding, J. M., “Mental practice among Olympic athletes,” Percep. Motor Skills, 72, 1007–1017 (1991).

    Google Scholar 

  • Vasil’ev, A. N., Liburkina, S. P., and Kaplan, A. Ya., “Lateralization of EEG patterns in humans imagining hand movements in a brain–computer interface,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 66, No. 3, 302–312 (2016).

    Google Scholar 

  • Vaughan, T., McFarland, D., Schalk, G., Sarnacki, W., Krusienski, D., Sellers, E., and Wolpaw, J., “The Wadsworth BCI research and development program: at home with BCI,” IEEE Trans. Neural. Syst. Rehabil. Eng., 14, No. 2, 229–233 (2006).

    PubMed  Google Scholar 

  • Volkova, K. V., Dagaev, N. I., Kiselev, A. S., Kasumov, V. R., Aleksandrov, M. V., and Osadchii, A. E., “A brain–computer interface and possible ways of improving its working characteristics,” Zh. Vyssh. Nerv. Deyat. I. P. Pavlova, 67, No. 4, 504–521 (2017).

    Google Scholar 

  • Woolfolk, R., Lehrer, P., McCann, B., and Rooney, A., “Effects of progressive relaxation and meditation on cognitive and somatic manifestations of daily stress,” Behav. Res. Ther., 20, No. 5, 461–467 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Bobrova.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 4, pp. 377–393, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrova, E.V., Frolov, A.A. & Reshetnikova, V.V. Methods and Approaches to Optimizing Control Using a Brain–Computer Interface System by Healthy Subjects and Patients with Motor Disorders. Neurosci Behav Physi 48, 1041–1052 (2018). https://doi.org/10.1007/s11055-018-0667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0667-4

Keywords

Navigation