Skip to main content
Log in

Cellular and Molecular Bases of Changes to Neuroimmune Interactions in Stress

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This article presents current views on the cellular and molecular bases of the central mechanisms of neuroimmune interactions, along with data on the effects of destabilizing factors (painful electrical stimulation, cold, psychoemotional stress) on the functions of neurons and immunocompetent cells. It is important to emphasize that stress is associated with changes in ligand-receptor interactions on the membranes of lymphoid cells which respond to the interleukin-1 regulatory signal; these changes consist either of enhanced responses to this regulatory signal (in mild stress situations) or sharp decreases in responses (on exposure to strongly stressful factors). Special attention is paid to the role of the orexinergic system in the mechanisms mediating the brain’s responses to administration of antigens and exposure to stressors. We consider possible means of correcting the imbalance in the functional interaction between the nervous and immune systems occurring as a result of various destabilizing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. V. Abramova, S. V. Perekrest, N. S. Novikova, et al., “Morphological changes in orexin-containing neurons in the hypothalamus on administration of lipopolysaccharide combined with extremely high-frequency electromagnetic radiation of the skin,” Vestn. St. Peterb. Gos. Univ., Ser. 11, Meditsina, No. 3, 229–236 (2009).

    Google Scholar 

  2. S. V. Barabanova, O. I. Golovko, T. B. Kazakova, et al., “Effects of stress on the expression of the inducible c-Fos and interleukin-2 genes in cells of the nervous and immune systems,” Neirokhimiya, 15, No. 4, 380–387 (1998).

    CAS  Google Scholar 

  3. E. A. Korneva, N. S. Novikova, T. V. Abramova, et al., “Effects of EHF irradiation of the skin on the intensity of cyclophosphamide-induced activation of cells in hypothalamic structures,” Nefrologiya, 10, No. 3, 74–79 (2006).

    Google Scholar 

  4. E. A. Korneva, E. G. Rybakina, E. E. Fomicheva, et al., “Immunomodulatory effects of interleukin-1 and glucocorticoid hormones as interacting components in the neuroimmunomodulatory system,” Int. J. Immunoreabil., No. 10, 38–48 (1998).

    Google Scholar 

  5. N. S. Novikova, T. B. Kazakova, V. Rogers, and E. A. Korneva, “Exp ression of the c-fos gene in the rat hypothalamus in painful electrical stimulation and EHF irradiation of the skin,” Ros. Fiziol. Zh., 88, No. 11, 255–263 (2007).

    Google Scholar 

  6. E. G. Rybakina and E. A. Korneva, “The physiological role of interleukin- 1 in the mechanisms of development of stress reactions,” Med. Akad. Zh., 2, No. 2, 4–17 (2005).

    Google Scholar 

  7. E. G. Rybakina and E. A. Korneva, “Transduction of the interleukin-1 signal in the process of interactions between the nervous and immune systems of the body,” Vestn. Ross. Akad. Med. Nauk, 7, No. 3–8 (2005).

  8. E. G. Rybakina, S. N. Shanin, E. E. Fomicheva, et al., “Impairments to the interaction of the immune and neuroendocrine systems in stress and chronic fatigue syndrome, and means for correcting them,” Med. Akad. Zh., 10, No. 4, 161–174 (2010).

    Google Scholar 

  9. M. P. Rykova, I. V. Spirande, and M. S. Zedgenidze, “A new, highly sensitive method for testing normal killers,” Immunologiya, No. 3, 88–90 (1981).

    Google Scholar 

  10. B. A. Frolov, E. A. Korneva, and E. K. Shkhinek, “Functions of the immune system on exposure to extreme influences on the body,” in: Immunophysiology, Nauka, St. Petersburg (1993).

  11. E. K. Shkhinek, “Functions of the immune system and the activity of various populations of immunocompetent cells on exposure to exogenous hormones,” in: Immunophysiology, Nauka, St. Petersburg (1993).

  12. S. Ben Eliyahu, G. Shakar, G. G. Page, et al., “Suppression of NK cell activity and resistance to metastasis by stress: a role for adrenal catecholamines and beta-adrenoreceptors,” Neuroimmunomodulation, 8, No. 3, 154–64 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. I. Berczi, “Integration and regulation of higher organisms by the neuroimmune super system,” Int. J. Integr. Biol., 1, No. 3, 216–231 (2007).

    CAS  Google Scholar 

  14. K. Bulloch, “Neuroanatomy of lymphoid tissue: a review,” in: Neural Modulation of Immunity, New York (1985), pp. 111–140.

  15. L. DeLecea, T. S. Kilduff, C. Peyron, et al., “The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity,” Proc. Natl. Acad. Sci. USA, 95, No. 1, 322–327 (1998).

    Article  CAS  Google Scholar 

  16. D. Demirovic and S. I. Rattan, “Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis,” Exp. Gerontol., 48, No. 1, 94–98 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. A. Denes, Z. Boldogkoi, G. Uhereczky, et al., “Central autonomic control of the bone marrow: Multisynaptic tract tracing by recombinant pseudorabies virus,” Neuroscience, 134, No. 3, 947–963 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. F. S. Dhabbar and B. S. McEwen, “Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking,” Brain Behav. Immun., 11, No. 4, 286–306 (1997).

    Article  Google Scholar 

  19. C. A. Dinarello, “Interleukin-1,” in: The Cytokine Handbook, Academic Press (1998), 3rd ed., pp. 35–72.

  20. A. J. Dunn, “Role of cytokines in infection-induced stress,” Ann. NY Acad. Sci., 697, 189–202 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,” Immunochemistry, 8, No. 9, 871–874 (1971).

    Article  PubMed  CAS  Google Scholar 

  22. M. Fleshner, J. Campisi, T. Deak, et al., “Acute stressor exposure facilitates innate immunity more in physically active than in sedentary rats,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 282, No. 6, 1680–1686 (2002).

    Article  Google Scholar 

  23. M. Fleshner, K. T. Nguyen, C. S. Cotter, et al., “Acute stressor exposure both suppresses acquired immunity and potentiates innate immunity,” Am. J. Physiol., 275, No. 3, 870–878 (1998).

    Article  Google Scholar 

  24. Y. V. Gavrilov, S. V. Perekrest, N. S. Novikova, and E. A. Korneva, “Stress-induced changes in cellular responses in hypothalamic structures to administration of an antigen (lipopolysaccharide) (in terms of c-Fos protein expression),” Neurosci. Behav. Physiol., 38, No. 2, 189–194 (2008).

    Article  PubMed  Google Scholar 

  25. Y. A. Hannun, “The sphingomyelin cycle and second messenger function of ceramide,” J. Biol. Chem., 269, No. 5, 3125–3128 (1994).

    PubMed  CAS  Google Scholar 

  26. K. Hellstrand and S. Hermodsson, “Evidence for a beta-adrenoreceptor- mediated regulation of human natural killer cells,” J. Immunol., 134, No. 6, 4095–4099 (1985).

    PubMed  CAS  Google Scholar 

  27. E. A. Korneva, E. G. Rybakina, E. E. Fomicheva, et al., “Altered interleukin-1 production in mice exposed to rotation stress,” Int. J. Tissue React, 14, No. 5, 219–224 (1992).

    PubMed  CAS  Google Scholar 

  28. E. A. Korneva, S. V. Barabanova, O. I. Golovko, et al., “C-fos and IL-2 gene expression in rat brain cells and splenic lymphocytes after nonantigenic and antigenic stimuli,” Ann. N. Y. Acad. Sci., 917, 197–209 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. E. A. Korneva, S. N. Shanin, and E. G. Rybakina, “The role of interleukin-1 in stress-induced changes in immune system function,” Neurosci. Behav. Physiol., 31, No. 4, 431–437 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. E. A. Korneva, S. V. Perekrest, K. Z. Shainidze, et al., “Restraint stress effects on lipopolysaccharide-induced reactions of orexinergic system,” Adv. Neuroimmun. Biol. (2016).

  31. K. J. Kovacs, “C-Fos as a transcription factor: a stressful (re)view from a functional map,” Neurochem. Int., 33, No. 4, 287–297 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. Y. V. Gavrilov, S. V. Perekrest, and N. S. Novikova, “Intracellular expression of c-Fos protein in various structures of the hypothalamus in electrical pain stimulation and administration of antigens,” Neurosci. Behav. Physiol., 38, No. 1, 87–92 (2008).

    Article  PubMed  Google Scholar 

  33. V. R. Makar, M. K. Logani, A. Bhanushall, et al., “Effect of millimeter waves on natural killer cell activation,” Bioelectromagnetics, 26, No. 1, 10–19 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. S. E. Murray, H. R. Lallman, A. D. Heard, et al., “A genetic model of stress displays decreased lymphocytes and impaired antibody responses without altered susceptibility to Streptococcus pneumoniae,” J. Immunol., 167, No. 2, 691–698 (2001).

    Article  PubMed  CAS  Google Scholar 

  35. N. S. Novikova, T. B. Kazakova, E. A. Korneva, and V. Rogers, “Expression of the c-fos gene in the rat hypothalamus in electrical pain stimulation and UHF stimulation of the skin,” Neurosci. Behav. Physiol., 38, No. 4, 415–420 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. N. Novikova, T. Kazakova, V. Rogers, E. A. Korneva, “C-fos gene expression induced in cells in specific hypothalamic structures by noxious mechanical stimulation and its modification by exposure of the skin to extremely high frequency irradiation,” Neuro Endocrinol. Lett., 23, No. 4, 315–320 (2002).

    PubMed  Google Scholar 

  37. N. S. Novikova, S. V. Perekrest, V. Rogers, and E. A. Korneva, “Mor phometric analysis of hypothalamic cells expressing c-Fos gene after exposure to movement restriction and EHF-irradiation,” Pathophysiology, 15, No. 1, 19–24 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. N. S. Novikova, T. B. Kazakova, V. Rogers, and E. A. Korneva, “Expression of the c-Fos gene in spinal cord and brain cells rats subjected to stress in conditions of exposure to various types of halothane anesthesia,” Neurosci. Behav. Physiol., 34, No. 4, 407–412 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. A. Radzievsky, M. Rajavin, A. Cowan, et al., “Hypoalgesic effect of millimeter waves in mice: dependence on the site of exposure,” Life Sci., 66, No. 21, 2101–2111 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. H. S. Randeva, E. Karteris, D. Grammatopoulos, and E. W. Hillhouse, “Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and energy homeostasis,” J. Clin. Endocrinol. Metab., 86, No. 10, 4808–4813 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. E. G. Rybakina and H. A. Korneva, “Interleukin-1β signal transduction via the sphingomyelin pathway in brain cells,” Adv. Neuroimmun. Biol., 10, 79–91 (2008).

    Article  Google Scholar 

  42. T. Sakurai, A. Amemiya, M. Ishii, et al., “Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behaviour,” Cell, 92, No. 5, 573–585 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. S. N. Shanin, E. G. Rybakina, N. N. Novikova, et al., “Natural killer cell cytotoxic activity and c-Fos protein synthesis in rat hypothalamic cells after painful electric stimulation of the hind limbs and EHF irradiation of the skin,” Med. Sci. Monit., 11, No. 9, 309–315 (2005).

    Google Scholar 

  44. S. N. Shanin, E. G. Rybakina, N. N. Novikova, et al., “Natural killer cell cytotoxic activity and c-Fos protein synthesis in rat hypothalamic cells after painful electric stimulation of the hind limbs and EHF irradiation of the skin,” Med. Sci. Monit., 11, No. 9, 309–315 (2005).

    Google Scholar 

  45. U. Steidl, S. Bork, S. Schaub, et al., “Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators,” Blood, 104, No. 1, 81–88 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. M. Wenner, N. Kawamura, and T. Ishikawa, “Reward linked to increased natural killer cell activity in rats,” Neuroimmunomodulation, 7, No. 1, 1–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. D. Yin, D. Tuthill, R. A. Mufson, and Y. Shi, “Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression,” J. Exp. Med., 191, No. 8, 1423–1428 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. S. Zhang, D. Blache, P. E. Vercoe, et al., “Expression of orexin receptors in the brain and peripheral tissues of the male sheep,” Regul. Pept., 124, No. 1–3, 81–87 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Korneva.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 103, No. 3, pp. 217–229, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneva, E.A., Shanin, S.N., Novikova, N.S. et al. Cellular and Molecular Bases of Changes to Neuroimmune Interactions in Stress. Neurosci Behav Physi 48, 703–710 (2018). https://doi.org/10.1007/s11055-018-0620-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0620-6

Keywords

Navigation