Skip to main content
Log in

Harmful Effects at Early Age Alter Pain Sensitivity in Adult Female Rats and Its Correction with Buspirone

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Most studies of the influences of harmful pain and stress during the neonatal period of development on pain sensitivity are performed in males. We report here our studies of inflammatory pain and/or maternal deprivation stress in neonatal female rats on pain sensitivity in adulthood; an attempt was made to correct these changes using the 5-HT1A receptor agonist buspirone. Adult females subjected to early pain showed increased hypoalgesia in the hotplate test, while those subjected to maternal separation stress showed increased hyperalgesia in the formalin test. Pain and subsequent maternal separation had no effect on pain sensitivity in adult females. Chronic administration of buspirone from day 25 to day 39 of life to females subjected to inflammatory pain or maternal separation in the neonatal period normalized pain sensitivity in adults. In female rats, the prepurbertal period was found to be critical for correction of abnormalities in the nociceptive system induced by harmful actions at neonatal age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Butkevich, V. A. Mikhailenko, E. A. Vershinina, and N. A. Ulanova, “Differences in adaptive forms of behavior in male and female rats in the adolescent period of development subjected to inflammation or stress in the neonatal state,” Zh. Evolyuts. Biokhim. Fiziol., 51, No. 4, 266–275 (2015).

    CAS  Google Scholar 

  2. V. A. Mikhailenko, I. P. Butkevich, and M. K. Astapova, “Long-term influences of stressors in the neonatal period of development on the nociceptive system and psychoemotional behavior,” Ros. Fiziol. Zh., 102, No. 5, 540–550 (2016).

    CAS  Google Scholar 

  3. A. M. Aloisi and G. Sorda, “Relationship of female sex hormones with pain perception: focus on estrogens,” Pain Manag., 1, No. 3, 229–238 (2011).

    Article  PubMed  Google Scholar 

  4. K. J. Anand, W. G. Sippell, and A. Aynsley-Green, “Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response,” Lancet, 1, 243–248 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. M. H. Andrews and S. G. Matthews, “Programming of the hypothalamo-pituitary-adrenal axis: Serotonergic involvement,” Stress, 7, No. 1, 15–278 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. V. C. Z. Anseloni, F. He, S. I. Novikova, et al., “Alterations in stress-associated behaviors and neurochemical markers in adult rats after neonatal short-lasting local inflammatory insult,” Neuroscience, 131, 635–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. E. C. Azmitia, S. W. Griffi n, D. R. Marshak, et al., “S-100 beta and serotonin: a possible astrocytic-neuronal link to neuropathology of Alzheimer’s disease,” Prog. Brain Res., 94, 459–473 (1992).

  8. I. P. Butkevich, V. A. Mikhailenko, E. A. Vershinina, and A. M. Aloisi, “Effects of neonatal pain, stress and their interrelation on pain sensitivity in later life of male rats,” Chinese J. Physiol., 59, No. 4, 253–260 (2016).

    Google Scholar 

  9. L. Butkevich, V. Mikhailenko, E. Vershinina, et al., “Maternal buspirone protects against the adverse effects of in utero stress on emotional and pain-related behaviors in offspring,” Physiol. Behav., 102, No. 2, 137–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. F. Capone and A. M. Aloisi, “Refinement of pain evaluation techniques. The formalin test,” Ann. Ist. Super. Sanita, 40, 223–229 (2004).

    PubMed  Google Scholar 

  11. K. L. Chang, R. Fillingim, R. W. Hurley, and S. Schmidt, “Chronic pain management: pharmacotherapy for chronic pain,” FP Essent., 432, 27–38 (2015).

    PubMed  Google Scholar 

  12. L. Chen and T. Jackson, “Early maternal separation and responsiveness to thermal nociception in rodent offspring: a meta-analytic review,” Behav. Brain Res., 299, 42–50 (2016).

    Article  PubMed  Google Scholar 

  13. F. C. Colpaert, “5-HT(1A) receptor activation: new molecular and neuroadaptive mechanisms of pain relief,” Curr. Opin. Investig. Drugs, 7, 40–47 (2006).

    CAS  PubMed  Google Scholar 

  14. H. L. Fields and A. I. Basbaum, “Central nervous system mechanisms of pain modulation,” in: Text Book of Pain, P. D. Wall and R. Melzack (eds.), Churchill Livingstone, London (1999), pp. 309–329.

  15. R. B. Filligim, C. D. King, M. C. Ribeiro-Dasilva, et al., “Sex, gender, and pain: a review of recent clinical and experimental findings,” J. Pain, 10, No. 5, 447–485 (2009).

    Article  Google Scholar 

  16. M. Fitzgerald, “Developmental biology of inflammatory pain,” Br. J. Anaesth., 75, 177 185 (1995).

  17. M. Fitzgerald, “The developmental of nociceptive circuits,” Nat. Rev. Neurosci., 6, 507–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. J. Giordano and L. Rogers, “Putative mechanisms of buspirone-induced antinociception in the rat,” Pain, 50, 365–372 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. D. P. Holschneider, Y. Guo, E. A. Mayer, and Z. Wang, “Early life stress elicits visceral hyperalgesia and functional reorganization of pain circuits in adult rats,” Neurobiol. Stress, 13, 8–22 (2016).

  20. S. P. Hunt, R. Suzuki, W. Rahman, and A. H. Dickenson, “Chronic pain and descending facilitation” in: Proc. XI World Congress on Pain, H. Flor, E. Kalso, and J. O. Dostrovsky (eds.), IASP Press, Seattle (2006), pp. 349–363.

  21. J. L. LaPrairie and A. Z. Murphy, “Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury,” Pain, 132, No. 1, 124–133 (2007).

  22. J. L. LaPrairie and A. Z. Murphy, “Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray,” Front. Behav. Neurosci., 3, 31 (2009), doi: https://doi.org/10.3389/neuro.08.031.

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. L. LaPrairie and A. Z. Murphy, “Long term impact of neonatal injury in male and female rats: sex differences, mechanisms and clinical implications,” Front. Neuroendocrinol., 31, 193–202 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Lima, J. Malheiros, A. Negrigo, et al., “Sex-related long-term behavioral and hippocampal cellular alterations after nociceptive stimulation throughout postnatal development in rats,” Neuropharma cology, 77, 268–276 (2014).

    Article  CAS  Google Scholar 

  25. C. Loane and M. Politis, “Buspirone: What is it all about?” Brain Res., 1461, 111–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. D. R. Loyd and A. Z. Murphy, “The neuroanatomy of sexual dimorphism in opioid analgesia,” Exp. Neurol., 259, 57–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. C. M. McCormick and M. R. Green, “From the stressed adolescent to the anxious and depressed adult: investigations in rodent model,” Neuroscience, 249, 242–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. M. Melchior, P. Poisbeau, I. Gaumond, and S. Marchand, “Insights into the mechanisms and the emergence of sex-differences in pain,” Neuroscience, pii: S0306-4522(16)30156-7, doi: https://doi.org/10.1016/j.neuroscience (2016).

    Google Scholar 

  29. O. Mohamad, D. Chen, L. Zhang, et al., “Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats,” Mol. Pain, 7, 51 (2011), doi: https://doi.org/10.1186/1744-8069-7-51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. A. Mousa, C. P. Bopaiah, J. F. Richter, et al., “Inhibition of inflammatory pain by CRF at peripheral, spinal and supraspinal sites: involvement of areas coexpressing CRF receptors and opioid peptides,” Neuropsychopharmacology, 32, No. 12, 2530–2542 (2007).

  31. R. Nadeson and C. S. Goodchild, “Antinociceptive role of 5-HT1A receptors in rat spinal cord,” Br. J. Anaesth., 88, No. 5, 679–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. A. Negrigo, M. Medeiros, R. Guinsburg, and L. Covolan, “Longterm gender behavioral vulnerability after nociceptive neonatal formalin stimulation in rats,” Neurosci. Lett., 190, 196–199 (2012).

    Google Scholar 

  33. T. Nishinaka, K. Nakamoto, and S. Tokuyama, “Enhancement of nerve-injury-induced thermal and mechanical hypersensitivity in adult male and female mice following early life stress,” Life Sci., 121, 28–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. G. Pavlakovie, J. Tigges, and T. A. Crozier, “Effect of buspirone on thermal sensory and pain threshold in human volunteers,” BMC Clin. Pharmacol., 29, 9–12 (2009).

    Google Scholar 

  35. K. Ren, V. Anseloni, S. P. Zou, et al., “Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult,” Pain, 110, 588–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. B. A. Samuels, I. Mendez-David, C. Faye, et al., “Serotonin 1a and serotonin 4 receptors: essential mediators of the neurogenic and behavioral actions of antidepressants,” Neuroscientist, 22, No. 1, 26–45 (2016).

  37. R. M. Sapolsky and M. J. Meaney, “Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period,” Brain Res., 396, 64–76 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. F. Schwaller and M. Fitzgerald, “The consequences of pain in early life: injury-induced plasticity in developing pain pathways,” Eur. J. Neurosci., 39, 344–355 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. R. Screiber and A. Newman-Tancredi, “Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT1A receptor activation,” Neurobiol. Learn. Mem., 110, 72–80 (2014).

    Article  Google Scholar 

  40. N. C. Victoria, M. C. Karom, H. Eichenbaum, and A. Z. Murphy, “Neonatal injury rapidly alters markers of pain and stress in rat pups,” Dev. Neurobiol., 74, No. 1, 42–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. N. C. Victoria and A. Z. Murphy, “The long-term impact of early life pain on adult responses to anxiety and stress: Historical perspectives and empirical evidence,” Exp. Neurol., 275, No. 2, 261–273 (2016).

    Article  PubMed  Google Scholar 

  42. S. M. Walker, S. Beggs, and M. L. Baccei, “Persistent changes in peripheral and spinal nociceptive processing after early tissue injury,” Exp. Neurol., 275, 253–260 (2016).

    Article  PubMed  Google Scholar 

  43. G. Zheng, S. Hong, J. M. Hayes, and J. W. Wiley, “Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways,” Exp. Neurol., 273, 301–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Butkevich.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 10, pp. 1146–1155, October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butkevich, I.P., Mikhailenko, V.A. Harmful Effects at Early Age Alter Pain Sensitivity in Adult Female Rats and Its Correction with Buspirone. Neurosci Behav Physi 48, 180–185 (2018). https://doi.org/10.1007/s11055-018-0549-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0549-9

Keywords

Navigation