Skip to main content

Advertisement

Log in

The Role of Autoantibodies to the Extracellular Regions of Ionotropic Receptors in the Etiology and Pathogenesis of Autoimmune Diseases

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies over recent years have shown that autoantibodies to the extracellular regions of ionotropic receptors, such as glutamate AMPA and NMDA receptors, GABAA receptors, and glycine and nicotinic acetylcholine receptors, evoke a wide spectrum of autoimmune diseases, including autoimmune limbic encephalitis, Rasmussen’s encephalitis, systemic lupus erythematosus, myasthenia gravis, encephalomyelitis, and stiff person syndrome. This review analyzes and systematizes published data on autoimmune processes leading to the production of autoantibodies to ionotropic receptors, on the epitopes involved in inducing pathogenic autoantibodies, and the influences of these antibodies on nerve cell function and their role in the development of autoimmune diseases. The possible role of oncological diseases in generating autoantibodies to ionotropic receptors is discussed. The review also addresses recently developed approaches to suppressing the synthesis of pathogenic autoantibodies and neutralizing them, which have the potential for use in the treatment of autoimmune diseases induced by antibodies to ionotropic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Semenov and N. N. Popova, Neuromental Disorders in the Light of Immunopathology of the Brain, Meditsina, Moscow (1969).

    Google Scholar 

  2. A. O. Shpakov, “Peptide derivatives of the extracellular loop of receptors: structure, mechanism of action, and use in physiology and medicine,” Ros. Fiziol. Zh., 97, No. 5, 441–458 (2011).

    CAS  Google Scholar 

  3. F. Andrade, L. A. Casciola-Rosen, and A. Rosen, “Granzyme B-induced cell death,” Acta Haematol., 111, No. 1–2, 28–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. S. Araga, R. D. LeBoeuf, and J. E. Blalock, “Prevention of experimental autoimmune myasthenia gravis by manipulation of the immune network with a complementary peptide for the acetylcholine receptor,” Proc. Natl. Acad. Sci. USA, 90, No. 18, 8747–8751 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Arinuma, T. Yanagida, and S. Hirohata, “Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus,” Am. Rheum. Assoc., 58, No. 4, 1130–1135 (2008).

    CAS  Google Scholar 

  6. R. M. Armstrong, “Immunologic mechanisms in neurologic diseases,” Med. Clin. North Am., 56, No. 2, 515–527 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. G. Bajic, S. E. Degn, S. Thiel, and G. R. Andersen, “Complement activation, regulation, and molecular basis for complement-related diseases,” EMBO J., 34, No. 22, 2735–2757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Barchan, M. C. Souroujon, S. H. Im, et al., “Antigen-specific modulation of experimental myasthenia gravis: nasal tolerization with recombinant fragments of the human acetylcholine receptor alpha-subunit,” Proc. Natl. Acad. Sci. USA, 96, No. 14, 8086–8091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Carvajal-González, M. I. Leite, P. Waters, et al., “Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes,” Brain, 137, No. 8, 2178–2192 (2014).

  10. L. Casciola-Rosen, A. Miagkov, K. Nagaraju, et al., “Granzyme B: evidence for a role in the origin of myasthenia gravis,” J. Neuroimmunol., 201–202, 33–40 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. B. Castleman, “The pathology of the thymus gland in myasthenia gravis,” Ann. N. Y. Acad. Sci., 135, No. 1, 496–505 (1966).

    Article  CAS  PubMed  Google Scholar 

  12. J. H. Cho and M. Feldman, “Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies,” Nat. Med., 21, No. 7, 730–738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. L. Clardy, V. A. Lennon, J. Dalmau, et al., “Childhood onset of stiff-man syndrome,” JAMA Neurol., 70, No. 12, 1531–1536 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Dalmau and L. Bataller, “Limbic encephalitis: the new cell membrane antigens and a proposal of clinical-immunological classification with therapeutic implications,” Neurologia, 22, No. 8, 526–537 (2007).

  15. J. Dalmau, A. J. Gleichman, E. G. Hughes, et al., “Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies,” Lancet Neurol., 7, No. 12, 1091–1098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Dalmau, E. Lancaster, E. Martinez-Hernandez, et al., “Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis,” Lancet Neurol., 10, No. 1, 63–74 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Damásio, M. I. Leite, E. Coutinho, et al., “Progressive encephalomyelitis with rigidity and myoclonus: the first pediatric case with glycine receptor antibodies,” JAMA Neurol., 70, No. 4, 498–501 (2013).

    Article  PubMed  Google Scholar 

  18. E. Darrah and A. Rosen, “Granzyme B cleavage of autoantigens in autoimmunity,” Cell Death Differ., 17, No. 4, 624–632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L. A. DeGiorgio, K. N. Konstantinov, S. C. Lee, et al., “A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus,” Nat. Med., 7, No. 11, 1189–1193 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. P. Deitiker, T. Ashizawa, and M. Z. Atassi, “Antigen mimicry in autoimmune disease. Can immune responses to microbial antigens that mimic acetylcholine receptor act as initial triggers of myasthenia gravis?” Hum. Immunol., 61, No. 3, 255–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. A. Diaz, E. Black, and J. Dunning, “Is thymectomy in non-thymomatous myasthenia gravis of any benefit?” Interact. Cardiovasc. Thorac. Surg., 18, No. 3, 381–389 (2014).

    Article  PubMed  Google Scholar 

  22. D. B. Drachman, R. N. Adams, L. F. Josifek, and S. G. Self, “Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis,” New Engl. J. Med., 307, No. 13, 769–775 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. D. B. Drachman, C. W. Angus, R. N. Adams, et al., “Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation,” New Engl. J. Med., 298, No. 20, 1116–1122 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. B. Duthey, A. Hubner, S. Diehl, et al., “Anti-inflammatory effects of the GABAB receptor agonist baclofen in allergic contact dermatitis,” Exp. Dermatol., 19, No. 7, 661–666 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. A. G. Engel and K. Arahata, “The membrane attack complex of complement at the endplate in myasthenia gravis,” Ann. N. Y. Acad. Sci., 505, 326–332 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. C. Finke, U. A. Kopp, H. Pruss, et al., “Cognitive deficits following anti-NMDA receptor encephalitis,” J. Neurol. Neurosurg. Psychiatr., 83, No. 2, 195–198 (2012).

    Article  Google Scholar 

  27. L. C. Gahring, S. W. Rogers, and R. E. Twyman, “Autoantibodies to glutamate receptor subunit GluR2 in nonfamilial olivopontocerebellar degeneration,” Neurology, 48, No. 2, 494–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Y. Ganor, H. Goldberg-Stern, M. Blank, et al., “Antibodies to glutamate receptor subtype 3 (GluR3) are found in some patients suffering from epilepsy as the main disease, but not in patients whose epilepsy accompanies antiphospholipid syndrome or Sneddon’s syndrome,” Autoimmunity, 38, No. 6, 417–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. A. J. Gleichman, L. A. Spruce, J. Dalmau, et al., “Anti-NMDA-receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain,” J. Neurosci., 32, No. 32, 11,082–11,094 (2012).

    Article  CAS  Google Scholar 

  30. Y. Hacohen, S. Wright, P. Waters, et al., “Paediatric autoimmune encephalopathies: clinical features, laboratory investigations and outcomes in patients with or without antibodies to known central nervous system autoantigens,” J. Neurol.,” Neurosurg. Psychiatr., 84, No. 7, 748–755 (2013).

  31. C. Hammer, B. Stepniak, A. Schneider, et al., “Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity,” Mol. Psychiatry, 19, No. 10, 1143–1149 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. X. P. He, M. Patel, K. D. Whitney, et al., “Glutamate receptor G1uR3 antibodies and death of cortical cells,” Neuron, 20, No. 1, 153–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. G. Helgeland, A. Petzold, J. M. Hoff, et al., “Anti-heat shock protein 70 antibody levels are increased in myasthenia gravis and Guillain-Barré syndrome,” J. Neuroimmunol., 225, No. 1–2, 180–183 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. M. Hill, D. Beeson, P. Moss, et al., “Early-onset myasthenia gravis: a recurring T-cell epitope in the adult-specific acetylcholine receptor epsilon subunit presented by the susceptibility allele HLA-DR52a,” Ann. Neurol., 45, No. 2, 224–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. R. Höftberger, M. J. Titulaer, L. Sabater, et al., “Encephalitis and GABAB receptor antibodies: novel findings in a new case series of 20 patients,” Neurology, 81, No. 17, 1500–1506 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. R. Höftberger, A. van Sonderen, F. Leypoldt, et al., “Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients,” Neurology, 84, No. 24, 2403–2412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. M. Hutchinson, P. Waters, J. McHugh, et al., “Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody,” Neurology, 71, No. 16, 1291–1292 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. S. H. Im, D. Barchan, M. C. Souroujon, and S. Fuchs, “Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis,” J. Immunol., 165, No. 7, 3599–3605 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. M. S. Kayser, M. J. Titulaer, N. Gresa-Arribas, and J. Dalmau, “Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-d-aspartate receptor encephalitis,” JAMA Neurol., 70, No. 9, 1133–1139 (2013).

    Article  PubMed  Google Scholar 

  40. T. J. Kim, S. T. Lee, J. W. Shin, et al., “Clinical manifestations and outcomes of the treatment of patients with GABAB encephalitis,” J. Neuroimmunol., 270, No. 1–2, 45–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. J. Krieger, L. Bahar, and I. H. Greger, “Structure, dynamics, and allosteric potential of ionotropic glutamate receptor N-terminal domains,” Biophys. J., 109, No. 6, 1136–1148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. E. Lancaster, M. Lai, X. Peng, et al., “Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen,” Lancet Neurol., 9, No. 1, 67–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. M. Levite, I. A. Fleidervish, A. Schwarz, et al., “Autoantibodies to the glutamate receptor kill neurons via activation of the receptor ion channel,” J. Autoimmun., 13, No. 1, 61–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. X. Li, Y. T. Mao, J. J. Wu, et al., “Anti-AMPA receptor encephalitis associated with thymomatous myasthenia gravis,” J. Neuroimmunol., 281, No. 6, 35–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Y. Liu, H. Zhang, P. Zhang, et al., “Autoimmune regulator expression in thymomas with or without autoimmune disease,” Immunol. Lett., 161, No. 1, 50–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. J. Luo and J. Lindstrom, “Antigenic structure of the human muscle nicotinic acetylcholine receptor main immunogenic region,” J. Mol. Neurosci., 40, No. 1–2, 217–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. T. Masuda, M. Motomura, K. Utsugisawa, et al., “Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis,” J. Neurol., Neurosurg. Psychiatr., 83, No. 9, 935–940 (2012).

    Article  Google Scholar 

  48. S. Mathis, J. C. Pin, F. Pierre, et al., “Anti-NMDA receptor encephalitis during pregnancy: A case report,” Medicine (Baltimore), 94, No. 26, e1034 (2015).

    Article  Google Scholar 

  49. A. McKeon, E. Martinez-Hernandez, E. Lancaster, et al., “Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype,” JAMA Neurol., 70, No. 1, 44–50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. D. Mechelhoff, B. M. van Noort, B. Weschke, et al., “Anti-NMDA receptor encephalitis presenting as atypical anorexia nervosa: an adolescent case report,” Eur. Child Adolesc. Psychiatry, 24, No. 11, 1321–1324 (2015).

    Article  PubMed  Google Scholar 

  51. S. K. Mendu, A. Bhandage, Z. Jin, and B. Birnir, “Different subtypes of GABAA receptors are expressed in human, mouse and rat T lymphocytes,” PLoS One, 7, No. 8, e42959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. E. H. Moscato, Peng X, A. Jain, et al., “Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis,” Ann. Neurol., 76, No. 1, 108–119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. R. Nigam, H. El-Nour, B. Amatya, and K. Nordlind, “GABA and GABAA receptor expression on immune cells in psoriasis: a pathophysiological role,” Arch. Dermatol. Res., 302, No. 7, 507–515 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. T. Ohkawa, S. Satake, N. Yokoi, et al., “Identification and characterization of GABA(A)receptor autoantibodies in autoimmune encephalitis,” J. Neurosci., 34, No. 24, 8151–8163 (2014) .

    Article  PubMed  Google Scholar 

  55. M. Ohta, K. Ohta, N. Itoh, et al., “Anti-skeletal muscle antibodies in the sera from myasthenic patients with thymoma: identification of anti-myosin, actomyosin, actin, and α-actinin antibodies by a solid-phase radioimmunoassay and a western blotting analysis,” Clin. Chim. Acta, 187, No. 3, 255–264 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. D. M. Onugoren, D. Deuretzbacher, C. A. Haensch, et al., “Limbic encephalitis due to GABAB and AMPA receptor antibodies: a case series,” J. Neurol. Neurosurg. Psychiatr., 86, No. 9, 965–972 (2015).

    Article  Google Scholar 

  57. M. Parkes, A. Cortes, D. A. van Heel, and M. A. Brown, “Genetic insights into common pathways and complex relationships among immune-mediated diseases,” Nat. Rev. Genet., 14, No. 9, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. M. Petit-Pedrol, T. Armangue, X. Peng, et al., “Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterization of the antigen, and analysis of the effects of antibodies,” Lancet Neurol., 13, No. 3, 276–286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. P. Pettingill, H. B. Kramer, J. A. Coebergh, et al., “Antibodies to GABAA receptor α1 and γ2 subunits: clinical and serologic characterization,” Neurology, 84, No. 12, 1233–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. C. Provenzano, O. Arancio, A. Evoli, et al., “Familial autoimmune myasthenia gravis with different pathogenetic antibodies,” J. Neurol. Neurosurg. Psychiatr., 51, No. 9, 1228–1230 (1988).

    Article  CAS  Google Scholar 

  61. M. J. Rane, D. Gozal, W. Butt, et al., “Gamma-amino butyric acid type B receptors stimulate neutrophil chemotaxis during ischemia-reperfusion,” J. Immunol., 174, No. 11, 7242–7249 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. A. E. Renton, H. A. Pliner, C. Provenzano, et al., “A genome-wide association study of myasthenia gravis,” JAMA Neurol., 72, No. 4, 396–404 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. A. Rodgaard, F. C. Nielsen, R. Djurup, et al., “Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3,” Clin. Exp. Immunol., 67, No. 1, 82–88 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Scott, J. W. Lynch, and A. Keramidas, “Correlating structural and energetic changes in glycine receptor activation,” J. Biol. Chem., 290, No. 9, 5621–5634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Q. G. Shi, Z. H. Wang, X. W. Ma, et al., “Clinical significance of dete ction of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis,” Neurosci. Bull., 28, No. 5, 469–474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. A. O. Shpakov and E. A. Shpakova, “The use of peptides derived from G protein-coupled receptors and heterotrimeric G proteins in the study of their structure and functions. Chapter 4,” in: Protein Purification and Analysis III – Methods and Applications, iConcept Press Ltd. (2014), www.iconceptpress.com/books/protein-purification-and-analysis-iii-methods-and-applications.

  67. J. Steiner, M. Walter, W. Glanz, et al., “Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis,” JAMA Psychiatry, 70, No. 3, 271–278 (2013).

    Article  PubMed  Google Scholar 

  68. W. M. Stern, R. Howard, R. M. Chalmers, et al., “Glycine receptor antibody mediated progressive encephalomyelitis with rigidity and myoclonus (PERM): a rare but treatable neurological syndrome,” Pract. Neurol., 14, No. 2, 123–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. C. Sun, F. Meng, Y. Li, et al., “Antigen-specific immunoadsorption of anti-acetylcholine receptor antibodies from sera of patients with myasthenia gravis,” Artif. Cells Blood Substit. Immobil. Biotechnol., 38, No. 2, 99–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. J. R. Tkach and Y. Hokama, “Autoimmunity in chronic brain syndrome. A preliminary report,” Arch. Gen. Psychiatry, 23, No. 1, 61–64 (1970).

    Article  CAS  PubMed  Google Scholar 

  71. T. Tsouloufis, A. Mamalaki, and M. Remoundos, and S. J. Tzartos, “Reconstitution of conformationally dependent epitopes on the N-terminal extracellular domain of the human muscle acetylcholine receptor α subunit expressed in Escherichia coli: implications for myasthenia gravis therapeutic approaches,” Int. Immunol., 12, No. 9, 1255–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. R. E. Twyman, L. C. Gahring, J. Spiess, and S. W. Rogers, “Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site,” Neuron, 14, No. 4, 755–762 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. S. J. Tzartos, K. Bitzopoulou, I. Gavra, et al., “Antigen-specific apheresis of pathogenic autoantibodies from myasthenia gravis sera,” Ann. N. Y. Acad. Sci., 1132, 291–299 (2008).

    Article  PubMed  Google Scholar 

  74. S. J. Tzartos, A. Kokla, S. L. Walgrave, and B. M. Conti-Tronconi, “Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67–76 of the α subunit,” Proc. Natl. Acad. Sci. USA, 85, No. 9, 2899–2903 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. S. J. Tzartos. E. Morel, A. Efthimiadis, et al., “Fine antigenic specificities of antibodies in sera from patients with D-penicillamine-induced myasthenia gravis,” Clin. Exp. Immunol., 74, No. 1, 80–86 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. J. Valley, A. Vincent, and S. R. Irani, “Clinical and experimental studies of potentially pathogenic brain-directed autoantibodies: current knowledge and future directions,” J. Neurol., 262, No. 4, 1081–1095 (2015).

    Article  Google Scholar 

  77. K. Vaughan, Y. Kim, and A. Sette, “A comparison of epitope repertoires associated with myasthenia gravis in humans and nonhuman hosts,” Autoimmune Dis., 2012: 403915 (2012).

  78. E. Wuerfel, C. G. Bien, A. Vincent, et al., “Glycine receptor antibodies in a boy with focal epilepsy and episodic behavioral disorder,” J. Neurol. Sci, 343, No. 1–2, 180–182 (2014).

    Article  PubMed  Google Scholar 

  79. T. Yoshio, H. Okamoto, S. Hirohata, and S. Minota, “IgG anti-NR2 glutamate receptor autoantibodies from patients with systemic lupus erythematosus activate endothelial cells,” Arthritis Rheum., 65, No. 2, 457–463 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Shpakov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 7, pp. 773–791, July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharova, O.A., Shpakov, A.O. The Role of Autoantibodies to the Extracellular Regions of Ionotropic Receptors in the Etiology and Pathogenesis of Autoimmune Diseases. Neurosci Behav Physi 48, 1–10 (2018). https://doi.org/10.1007/s11055-017-0523-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0523-y

Keywords

Navigation