Skip to main content
Log in

Changes in Nociceptive Thresholds and Adenylyl Cyclase System Activity in Skeletal Muscles in Rats with Acute and Mild Type 1 Diabetes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Diabetic peripheral neuropathy (DPN) is one of the commonest complications of type 1 diabetes mellitus (DM1). The aims of the present work were to study the dynamics of the development of pain-type DPN and the functional status of the hormone-sensitive adenylyl cyclase signal system (ACSS) in the skeletal muscle of rats with models of acute and mild DM1 and to investigate the influences on these of insulin therapy using different routes of hormone administration – intranasal and peripheral. The nociceptive threshold in rats decreased in both models of DM1; the stimulatory effects of guanine nucleotides (GIDP) and adrenergic agonists (isoproterenol, BRL-37344) on adenylyl cyclase (AC) also decreased. The AC-stimulating effect of relaxin decreased in animals with acute DM1, while the change in mild DM1 was minor. Peripheral administration of insulin to rats with acute DM1 increased the nociceptive threshold and partially restored the AC effect of the β3 agonist BRL-37344. Intranasal administration of insulin to rats with mild DM1 also led to an increase in the nociceptive threshold and partially restored basal and BRL-37344-stimulated AC activity in the skeletal muscle of diabetic animals. Thus, skeletal muscle in rats with acute and mild DM1 showed impaired nociceptive sensitivity and ACSS function, which was partially restored by treatment of animals with insulin given peripherally (acute DM1) or intranasally (mild DM1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Ahlgren, “Mechanical hyperalgesia in streptozotocin-diabetic rats,” Neuroscience, 52, No. 4, 1049–1055 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. M. D. Allen, B. Major, K. Kimpinski, et al., “Skeletal muscle morphology and contractile function in relation to muscle denervation in diabetic neuropathy,” J. Appl. Physiol. (1985), 116, No. 5, 545–552 (2014).

    Article  CAS  Google Scholar 

  3. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care,, 37, Suppl. 1, S81–S90 (2014).

  4. D. Bani, “Relaxin as a natural agent for vascular health,” Vasc. Health Risk Manag., 4, No. 3, 515–524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. J. Biessels, N. A. Cristino, G. J. Rutten, et al., “Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats. Course of development and effects of insulin treatment,” Brain, 122, No. Part 4, 757–768 (1999).

  6. E. O. Brennesvik, C. Ktori, J. Ruzzin, et al., “Adrenaline potentiates insulin-stimulated PKB activation via cAMP and Epac: implications for cross talk between insulin and adrenaline,” Cell Signal, 17, No. 12, 1551–1559 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. B. C. Callaghan, H. T. Cheng, C. L. Stables, et al., “Diabetic neuropathy: clinical manifestations and current treatments,” Lancet Neurol., 11, No. 6, 521–534 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. F. Dehghan, B. S. Haerian, S. Muniandy, et al., “The effect of relaxin on the musculoskeletal system,” Scand. J. Med. Sci. Sports, 24, No. 4, e220–e229 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. S. V. Dhuria, L. R. Hanson and W. H. Frey, 2nd, “Intranasal delivery to the central nervous system: Mechanisms and experimental considerations,” J. Pharm. Sci., 99, No. 4, 1654–1673 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. J. M. Forbes and M. E. Cooper, “Mechanisms of diabetic complications,” Physiol. Rev., 93, No. 1, 137–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. G. J. Francis, J. A. Martinez, W. Q. Liu, et al., “Motor end plate innervation loss in diabetes and the role of insulin,” J. Neuropathol. Exp. Neurol., 70, No. 5, 323–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. D. Fuchs, F. Birklein, P. W. Reeh, and S. K. Sauer, “Sensitized peripheral nociception in experimental diabetes of the rat,” Pain, 151, No. 2, 496–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. A. J. Garber, “The impact of streptozotocin-induced diabetes mellitus on cyclic nucleotide regulation of skeletal muscle amino acid metabolism in rat,” J. Clin. Invest., 65, No. 2, 478–487 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. R. Hadcock, J. D. Port, M. S. Gelman, and C. C. Malbon, “Crosstalk between tyrosine kinase and G-protein-linked receptors. Phosphorylation of beta 2-adrenergic receptors in response to insulin,” J. Biol. Chem., 267, No. 36, 26 017–26 022 (1992).

    CAS  Google Scholar 

  15. M. Heni, R. Wagner, S. Kullmann, et al., “Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men,” Diabetes, 63, No. 12, 4083–4088 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Y. M. J. J. Hoybergs and T. F. Meert, “The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathy,” Neurosci. Lett., 417, No. 2, 149–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. G. S. Lynch and J. G. Ryall, “Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease,” Physiol. Rev., 88, No. 2, 729–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. P. Maurel and J. L. Salzer, “Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI3-kinase activity,” J. Neurosci., 20, No. 12, 4635–4645 (2000).

    CAS  PubMed  Google Scholar 

  19. S. Negishi, Y. Li, A. Usas, et al., “The effect of relaxin treatment on skeletal muscle injuries,” Am. J. Sports Med., 33, No. 12, 1816–1824 (2005).

    Article  PubMed  Google Scholar 

  20. R. A. Ngala, J. O’Dowd, S. J. Wang, et al., “Beta2-adrenoceptors and non-beta-adrenoceptors mediate effects of BRL37344 and clenbuterol on glucose uptake in soleus muscle: studies using knockout mice,” Br. J. Pharmacol., 158, No. 7, 1676–1682 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T. Ogata, S. Ijima, S. Hoshikawa, et al., “Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination,” J. Neurosci., 24, No. 30, 6724–6732 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. J. Piriz, I. Torres-Aleman, and Nunez, “Independent alterations in the central and peripheral somatosensory pathways in rat diabetic neuropathy,” Neuroscience, 160, No. 2, 402–411 (2009).

  23. G. Plourde, S. Rousseau-Migneron, and A. Nadeau, “Physical training increases beta-adrenoceptor density and adenylate cyclase activity in high-oxidative skeletal muscle of diabetic rats,” Metabolism, 41, No. 12, 1331–1335 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. D. Romanovsky, N. F. Cruz, G. A. Dienel, and M. Dobretsov, “Mechanical hyperalgesia correlates with insulin deficiency in normoglycemic streptozotocin-treated rats,” Neurobiol. Dis., 24, No. 2, 384–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. D. Romanovsky, S. L. Hastings, J. R. Stimers, and M. Dobretsov, “Relevance of hyperglycemia to early mechanical hyperalgesia in streptozotocin-induced diabetes,” J. Peripher. Nerv. Syst., 9, No. 2, 62–69 (2004).

    Article  PubMed  Google Scholar 

  26. J. G. Ryall, D. R. Plant, P. Gregorevic, et al., “Beta 2-agonist administration reverses muscle wasting and improves muscle function in aged rats,” J. Physiol., 555, Pt. 1, 175–188 (2004).

  27. E. Shemesh, A. Rudich, I. Harman-Boehm, and T. Cukierman-Yaffe, “Effect of intranasal insulin on cognitive function: a systematic review,” J. Clin. Endocrinol. Metab., 97, No. 2, 366–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. A. O. Shpakov, O. V. Chistyakova, K. V. Derkach, et al., “Intranasal insulin affects adenyl cyclase system in rat tissues in neonatal diabetes,” Cent. Eur. J. Biol., 7, No. 1, 33–47 (2012).

    CAS  Google Scholar 

  29. A. O. Shpakov and K. V. Derkach, “The functional state of hormone-sensitive adenylyl cyclase signaling system in diabetes mellitus,” J. Signal Transduct., 2013, 594213 (2013).

  30. A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, et al., “Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin in skeletal muscles of rat with streptozotocin type 1 diabetes,” Cent. Eur. J. Biol., 1, No. 4, 530–544 (2006).

    CAS  Google Scholar 

  31. U. Stockhorst, D. de Fries, H. J. Steingrueber, and W. A. Scherbaum, “Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans,” Physiol. Behav., 83, No. 1, 47–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. U. Stockhorst, H. J. Steingruber, and W. A. Scherbaum, “Classically conditioned responses following repeated insulin and glucose administration in humans,” Behav. Brain Res., 110, No. 1–2, 143–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. J. T. Stuenaes, A. Bolling, A. Ingvaldsen, et al., “Beta-adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation inrat cardiomyocytes via cAMP and PKA,” Br. J. Pharmacol., 160, No. 1, 116–129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R. Taliyan and P. L. Sharma, “Possible mechanism of protective effect of thalidomide in STZ-induced-neuropathic pain behavior in rats,” Inflammopharmacology, 20, No. 2, 89–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. S. Tesfaye, A. J. Boulton, P. J. Dyck, et al., “Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments,” Diabetes Care, 33, No. 10, 2285–2293 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. N. Toda, T. Imamura, and T. Okamura, “Alteration of nitric oxidemediated blood flow regulation in diabetes mellitus,” Pharmacol. Ther., 127, No. 3, 189–209 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shipilov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 2, February, pp. 176–187, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipilov, V.N., Trost, A.M., Chistyakova, O.V. et al. Changes in Nociceptive Thresholds and Adenylyl Cyclase System Activity in Skeletal Muscles in Rats with Acute and Mild Type 1 Diabetes . Neurosci Behav Physi 47, 517–523 (2017). https://doi.org/10.1007/s11055-017-0428-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0428-9

Keywords

Navigation