Skip to main content
Log in

The Key Role of Calcium in the Mechanism of Deprivation Potentiation of Population Responses of Neurons in Hippocampal Field CA1

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

In vitro studies on living rat hippocampus slices addressed the role of Ca2+ in the mechanism of deprivation potentiation of population responses (pop spikes) of neurons in field CA1 induced by prolonged (60 min) interruption of low-frequency test stimulation of Schaffer collaterals. Two phases were seen in deprivation potentiation, with presumptively different origins: an initial short-lived “peak” (about 12 min) and a longer-lasting “plateau” (more than 1 h). The experiments reported here showed that the presence of a penetrating Ca2+ chelator (BAPTA-AM), decreasing the Ca2+ concentration in the solution, and depletion of the intracellular calcium depot (presence of thapsigargin/cyclopiazonic acid in the solution) led to reductions in the transient phase and blockade of the longer-lasting phase of deprivation potentiation. These studies thus demonstrate the key roles of both extracellular and stored intracellular calcium in the mechanism of development of deprivation potentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behnish, T. and Reymann, K., “Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal Ca2+ neurons,” Neurosci. Lett., 192, 185–188 (1995).

    Article  Google Scholar 

  • Berridge, M. J., “Neuronal calcium signaling,” Neuron, 21, 13–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Bliss, T. V. P. and Collingridge, G. L., “A synaptic model of memory: longterm potentiation in the hippocampus,” Nature, 361, 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Bliss, T. V. P. and T. Lømo, “Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” J. Physiol., 232, 331–356 (1973).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Camello C., Lomax, R., Peterson, O. H., and Tepikin, A. V., “Calcium leak from intracellular stores – the enigma of calcium signaling,” Cell Calcium, 32, No. 5–6, 355–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Collingridge, G. L., Peineau, S., Howland J. G., and Wang,Y. T., “Long-term depression in the CNS,” Nat. Rev. Neurosci., 11, No. 7, 459–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Conti, R. and Lisman, J., “A large sustained Ca2+ elevation occurs in unstimulated spines during the LTP pairing protocol but does not change synaptic strength,” Hippocampus, 12, No. 5, 667–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie, T. and Lynch, G., “The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation,” Brain Res., 169, 103–110 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Frey, U., Schollmeier, K., Reymann, K. G., and Seidenbecher, T., “Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases,” Neuroscience, 67, No. 4, 799–807 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Gleichmann, M. and Mattson, M. P., “Neuronal calcium homeostasis and dysregulation,” Antioxid. Redox. Signal., 14, No. 7, 1261–1273 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harvey, J. and Collingridge, G. L., “Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices,” Neurosci. Lett., 139, 197–200 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto, E. M., Vivar, C., and Camandola, S., “Physiology and pathology of calcium signaling in the brain,” Front. Pharmacol., 3–61 (2012).

  • Lam, A. and Galione, A., “The endoplasmic reticulum and junctional membrane communication during calcium signaling,” Biochem. Biophys. Acta, 1833, No. 11, 2542–2559 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M. A., “Long-term potentiation and memory,” Physiol. Rev., 84, 87–136 (2003).

    Article  Google Scholar 

  • Lynch, G. S., Dunwiddie, T. and Gribkoff, V., “Heterosynaptic depression: a postsynaptic correlate of the long-term potentiation,” Nature, 266, 737–739 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, G., Larson, J., Kelso, S., et al., “Intracellular injections of EGTA block induction of hippocampal long-term potentiation,” Nature, 305, 719–721 (1983).

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, J. F., Jackson, M. F., and Beazely, M. A., “Hippocampal longterm synaptic plasticity and signal amplification of NMDA receptors,” Crit. Rev. Neurobiol., 18, No. 1–2, 71–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Malenka, R. C., Kauer, J. A., Zucker, R. S., and Nicoll, R. A., “Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission,” Science, 242, 81–84 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Malenka, R. C., Kauer, J. A., Perkel, D. J., and Nicoll, R. A., “The impact of postsynaptic calcium on synaptic transmission – its role in longterm potentiation,” Trends Neurosci., 12, 444–450 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, T., Kanazawa, I., and Sakurai, M., “Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor,” Eur. J. Neurosci., 14, No. 4, 701–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Mulkey, R. M. and Malenka, R. C., “Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus,” Neuron, 9, 967–975 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Nikoletopoulou, V. and Tevernarakis, N., “Calcium homeostasis in aging neurons,” Front. Gerontol., 3, Article 200, 1–17 (2012).

  • Popov, V. A., “Spontaneous potentiation of focal potentials in field CA1 in long-term living rat hippocampal slices in the absence of electrical stimulation,” Zh. Vyssh. Nerv. Deyat., 44, No. 1, 149–158 (1994).

    CAS  Google Scholar 

  • Popov, V. A. and Markevich, V. A., “The development of slow potentiation of the population spike after prolonged non-stimulation of an input in rats in the state of narcotic sleep,” Zh. Vyssh. Nerv. Deyat., 49, No. 4, 689–693 (1999).

    CAS  Google Scholar 

  • Popov, V. A. and Markevich, V. A., “Studies of the mechanism of development of ‘deprivation’ potentiation of the population responses of neurons in field CA1 in living hippocampal slices,” Zh. Vyssh. Nerv. Deyat., 51, No. 5, 598–603 (2001).

    CAS  Google Scholar 

  • Raymond, C. R., and Redman, S. J., “Different calcium sources are narrowly tuned to the induction of different forms of LTP,” J. Neurophysiol., 88, 249–255 (2002).

    CAS  PubMed  Google Scholar 

  • Reyes, M. and Stanton, P. K., “Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores,” J. Neurosci., 16, No. 19, 5951–5960 (1996).

    CAS  PubMed  Google Scholar 

  • Reymann, K. G., “Mechanisms underlying synaptic long-term potentiation in the hippocampus: focus on postsynaptic glutamate receptors and protein kinases,” Funct. Neurol. Suppl., 8, No. 5, 7–32 (1993).

    Google Scholar 

  • Reymann, K. G., Frey, U., Jork, R., and Matthies, H., “Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CA1 neurons,” Brain Res., 440, No. 2, 305–314 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Tonkikh, A., Janus, C., El-Beheiry, H., et al., “Calcium chelation improves spatial learning and synaptic plasticity in aged rats,” Exp. Neurol., 197, No. 2, 291–300 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Popov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 1, pp. 54–63, January–February, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.A., Markevich, V.A. The Key Role of Calcium in the Mechanism of Deprivation Potentiation of Population Responses of Neurons in Hippocampal Field CA1. Neurosci Behav Physi 45, 483–489 (2015). https://doi.org/10.1007/s11055-015-0099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0099-3

Keywords

Navigation