Skip to main content

Advertisement

Log in

Creatine in Cell Metabolism and Its Protective Action in Cerebral Ischemia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to review data on the involvement of creatine in cellular metabolism in nervous tissue. The questions discussed included the characteristics of the passage of creatine across the blood–brain barrier and expression of the creatine transporter. The mechanism of the protective effect of creatine in experimental models of cerebral ischemia is discussed. The action of creatine is shown to be linked with energy metabolism (formation of creatine phosphate) and inhibition of excitotoxicity. The antioxidant and antiapoptotic actions of creatine are assessed. The synthesis of compounds able to cross the blood–brain barrier without involvement of the transporter (CRT) resolves the problem of creatine delivery. The compounds with the greatest potential are creatine amides, which appear to be able to cross cell membranes using the amino acid transporter. The potential for the use of these compounds is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. S. Veselkina, N. V. Kratirova, M. E. Kolpakova, et al., “Cytoprotective effects of creamide in experimental cerebral ischemia/reperfusion in rats,” Ros. Fiziol. Zh., 98, No. 9, 1094–1100 (2012).

    CAS  Google Scholar 

  2. T. D. Vlasov, S. G. Chefu, A. E. Baisa, et al., “Creatine amides: potentials for neuroprotection,” Ros. Fiziol. Zh., 97, No. 7, 708–716 (2011).

    CAS  Google Scholar 

  3. M. M. Galagudza, D. V. Korolev, N. V. Evreinova, et al., “Studies of the biodegradability of silicon nanocarriers for the targeted drug delivery in vitro and in vivo,” Nanotekhnika, No. 1, 86–89 (2011).

  4. E. I. Erlykina, E. M. Khvatova, and N. S. Kolchina, “Interaction of creatine kinase with mitochondrial membranes in the rat brain,” NMZh, No. 4, 24–27 (2005).

  5. N. V. Kratirova, O. S. Veselkina, M. E. Kolpakova, et al., “Effect of intragastric administration of creatinylglycine ethyl ester fumarate in occlusive cerebral edema in rats,” Ros. Fiziol. Zh., 98, No. 10, 1258–1264 (2012).

    CAS  Google Scholar 

  6. E. Adriano, P. Garbati, G. Delmonte, et al., “Search for a therapy of creatine transporter deficiency: some effects of creatine ethylester in brain slices in vitro,” Neuroscience, 199, 386–393 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. P. Allen, “Creatine metabolism and psychiatry disorders: does creatine supplementation have therapeutic value?” Neurosci. Biobehav. Rev., 36, 1442–1462 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. R. H. Andres, A. D. Ducray, A. W. Huber, et al., “Effects of creatine treatment on survival and differentiation of GABAergic neurons in cultured striatal tissue,” J. Neurochem., 95, 33–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. R. H. Andres, A. D. Ducray, U. Schlattner, et al., “Functions and effects of creatine in the central nervous system,” Brain Res. Bull., 76, 329–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. M. Balestrino, C. Gandolfo, and L. Perasso, “Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat,” Curr. Enzyme Inhibition, 5, 223–233 (2009).

    Article  CAS  Google Scholar 

  11. O. Braissant, H. Henry, M. Loup, et al., “Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study,” Brain Res., 86, 193–201 (2001).

    Article  CAS  Google Scholar 

  12. O. Braissant, “Creatine and guanidinoacetate transport at blood–brain and blood-cerebrospinal fluid barriers,” J. Inherit. Metab. Dis., 35, 655–664 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. J. T. Brosnan and M. E. Brosnan, “Creatine: endogenous metabolite, dietary, and therapeutic supplement,” Annu. Rev. Nutr., 27, 241–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. M. Brudnak, “Creatine: are the benefits worth it?” Toxicol. Lett., 150, 123–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. P. J. Dechent, B. Pouwels, F. Wilken, and J. Hanefeld, “Increase of total creatine in human brain after oral supplementation of creatine-monohydrate,” Am. J. Physiol., 277, R698–R704 (1999).

    CAS  PubMed  Google Scholar 

  16. V. Eulenburg, W. Armsen, H. Betz, and J. Gomeza, “Glycine transporters: essential regulators of neurotransmission,” Trends Biochem. Sci., 30, No. 6, 325–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. B. Friedman, C. Schachtrup, P. S. Tsai, et al., “Acute vascular disruption and aquaporin 4 loss after stroke,” Stroke, 40, No. 6, 2182–2190 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  18. A. Frigeri, G. P. Nicchia, and M. Svelto, “Aquaporins as targets for drug discovery,” Curr. Pharm. Des., 13, 2421–2427 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. M. Y.-T. Globus, R. Busto, W. D. Dietrich, et al., “Effect of ischemia on the release of striatal dopamine, glutamate, and γ-aminobutyric acid studied by intracerebral microdialysis,” J. Neurochem., 51, 1455–1464 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. L. Hirt, B. Ternon, M. Price, et al., “Protective role of early Aquaporin 4 induction against postischemic edema formation,” J. Cereb. Blood Flow Metab., 29, No. 2, 423–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. D. Holtzman, I. Khait, R. Mulkern, et al., “In vivo development of brain phosphocreatine in normal and creatine-treated rabbit pups,” J. Neurosci., 73, 2477–2484 (1999).

    CAS  Google Scholar 

  22. K. Ikeda, Y. Iwasaki, and M. Kinoshita, “Oral administration of creatine monohydrate retards progression of motor neuron disease in the wobbler mouse,” Amyotroph. Lat. Scler. Other Motor Neuron Disord., No. 1, 207–212 (2000).

  23. O. S. Ipsiroglu, C. Stromberger, J. Ilas, et al., “Changes of tissue creatine concentrations upon oral supplementation of creatine monohydrate in various animal species,” Life Sci., 69, 1805–1815 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. C. J. Jost, C. E. Van Der Zee, H. J. In’t Zandt, et al., “Creatine kinase B-drive energy transfer in brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility,” Eur. J. Neurosci., 15, 1692–1706 (2002).

    Article  PubMed  Google Scholar 

  25. G. E. Kim, J. H. Lee, Y. P. Cho, and S. T. Kim, “Metabolic changes in the ischemic penumbra after carotid endarterectomy in stroke patients by localized in vivo proton magnetic resonance spectroscopy (H-MRS),” Cardiovasc. Surg., 9, 345–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. A. M. Klein and R. J. Ferrante, “The neuroprotective role of creatine,” Subcell. Biochem., 46, 205–243 (2007).

    Article  PubMed  Google Scholar 

  27. J. M. Lawler, W. S. Barners, G. Wu, et al., “Direct antioxidant properties of creatine,” Biochem. Biophys. Res. Commun., 290, 47–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. M. Lensman, D. E. Korzhevskii, V. O. Mourovets, et al., “Intracerebrovascular Administration of creatine protects against damage by global cerebral ischemia in rats,” Brain Res., 1114, 187–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. T. Li, N. Wang, and M. Zhao, “Neuroprotective effect of phosphocreatine on focal cerebral ischemia-reperfusion injury,” J. Biomed. Biotechnol., 2012, 168756 (2012), DOI: 10.1155/2012/168756, Epub (2012).

  30. J. López-Viota, S. Mandal, A. V. Delgado, et al., “Electrophoretic characterization of gold nanoparticles functionalized with human serum albumin (HAS) and creatine,” J. Colloid Interf. Sci., 332, 215–223 (2009).

    Article  Google Scholar 

  31. D. V. Magni, M. S. Oliveira, A. F. Furian, et al., “Creatine decreases convulsions and neurochemical alterations induced by glutaric acid in rats,” Brain Res., 1185, 336–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. C. S. W. Mak, H. J. Waldvogel, J. R. Dodd, et al., “Immunohistochemical localization of the creatine transporter in the rat brain,” Neuroscience, 163, 571–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. L. Massieu, P. Del Rio, and T. Montiel, “Neurotoxicity of glutamate uptake inhibition in vivo: correlation with succinate dehydrogenase activity and prevention by energy substrates,” Neuroscience, 106, 669–677 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. J. M. Mates, “Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology,” Toxicology, 153, 84–104 (2000).

    Article  Google Scholar 

  35. R. T. Matthews, L. Yang, B. G. Jenkins, et al., “Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease,” J. Neurosci., 18, No. 1, 156–163 (1998).

    CAS  PubMed  Google Scholar 

  36. R. T. Matthews, R. J. Ferrante, P. Klivenyi, et al., “Creatine and cyclocreatine attenuate MPTP neurotoxicity,” Exp. Neurol., 157, 142–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. K. Näntö-Salonen, M. Komu, N. Lundbom, et al., “Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia,” Neurology, 53, 303–307 (1999).

    Article  PubMed  Google Scholar 

  38. S. Ohtsuki, M. Tachikawa, H. Takanaga, et al., “The blood–brain barrier creatine transporter is a major pathway for supplying creatine to the brain,” J. Cereb. Blood Flow Metab., 22, 1327–1335 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. M. S. Oliveria, A. F. Furian, M. R. Fighera, et al., “The involvement of the polyamines binding sites at the NMDA receptor in creatine-induced spatial learning enhancement,” Behav. Brain Res., 187, 200–204 (2008).

    Article  Google Scholar 

  40. H. Pasantes-Morales and S. Cruz-Rangel, “Brain volume regulation: osmolytes and aquaporin perspectives,” Neuroscience, 168, 871–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. M. J. Peral, M. Garcia-Delgado, M. L. Calonge, et al., “Human, rat and chicken small intestinal Na+-Cl-creatine transporter: functional, molecular characterization and localization,” J. Physiol., 545, 133–144 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. L. Perasso, A. Cupello, G. L. Lundardi, et al., “Kinetics of creatine in blood and brain after intraperitoneal injection in the rat,” Brain Res., 974, 37–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. L. Perasso, E. Adriano, P. Ruggeri, et al., “In vivo neuroprotection by creatine-derived compound: phosphocreatine-Mg complex acetate,” Brain Res., 1285, 158–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. G. Prabhakar, L. Vona-Davs, D. Murray, et al., “Phosphocreatine restores high-energy phosphates in ischemic myocardium: Implication for off-pump cardiac revascularization,” J. Amer. Chem. Soc., 197, No. 5, 786–791 (2003).

    Google Scholar 

  45. K. Prass, G. Royl, U. Lindauer, et al., “Improved reperfusion and neuroprotection by creatine in a mouse model of stroke,” J. Cereb. Blood Flow Metab., 27, 452–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. J. L. Price, A. I. Ko, M. J. Wade, et al., “Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease,” Arch. Neurol., 58, 1395–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. L. M. Rambo, L. R. Ribeiro, V. G. Schramm, et al., “Creatine increases hippocampal Na+,K+-ATPase activity via NMDA-calcineurin pathway,” Brain Res. Bull., 88, 553–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. L. F. Royes, M. R. Fighera, A. F. Furian, et al., “Creatine protects against the convulsive behavior and lactate production elicited by the intrastriate injection of methylmalonate,” Neuroscience, 118, No. 4, 1079–1090 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. L. F. Royes, M. R. Fighera, A. F. Furian, et al., “Effectiveness of creatine monohydrate on seizures and oxidative damage induced by methylmalonate,” Pharmacol. Biochem. Behav., 83, 136–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. G. S. Salomons, S. J. van Dooren, N. M. Verhoeven, et al., “X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome,” Am. J. Hum. Genet., 68, 1497–1500 (2001).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. M. D. Saltarelli, A. L. Bauman, K. R. Moore, et al., “Expression of the rat brain creatine transporter in situ and in transfected HeLa cells,” Dev. Neurosci., 18, 524–534 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. A. Sarup, O. M. Larsson, and A. Schousboe, “GABA transporters and GABA transaminase as drug targets,” Curr. Drug Targets CNS Neurol. Disord., 2, No. 4, 269–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. R. Schmidt-Kastner and T. F. Freund, “Selective vulnerability of the hippocampus in brain ischemia,” neuroscience, 40, 599–636 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. U. Schlattner, M. Tokarska-Schlattner, and T. Wallimann, “Mitochondrial creatine kinase in human health and disease,” Biochem. Biophys. Acta, 1762, 164–180 (2006).

    CAS  PubMed  Google Scholar 

  55. P. Sestili, C. Martinelli, G. Bravi, et al., “Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity,” Free Radic. Biol. Med., 40, 837–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. D. A. Shear, K. L. Haik, and G. L. Dunbar, “Creatine reduces 3-nitropropionic acid-induced cognitive and motor abnormalities in rats,” NeuroReport, 11, No. 9, 1833–1837 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. H. Shen and M. P. Goldberg, “Creatine pretreatment protects cortical axons from energy depletion in vitro,” Neurobiol. Dis., 47, 184–193 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. A. Schulze and R. Battini, “Pre-symptomatic treatment of creatine biosynthesis defects,” Subcell. Biochem., 46, 167–181 (2007).

    Article  PubMed  Google Scholar 

  59. A. Schulze, T. Hess, R. Wevers, et al., “Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism,” J. Pediatr., 131, 626–631 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. F. Streijger, F. Orlemans, B. A. Ellenbroek, et al., “Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmin,” Behav. Brain Res., 157, 219–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. N. W. Szysman, N. P. Loureiro, T. Tenorio, et al., “Study of copper (I) ternary complexes with phosphocreatine and some polyamines in aqueous solution,” J. Inorg. Biochem., 105, 1712–1719 (2011).

    Article  Google Scholar 

  62. M. A. Tarnopolsky, “Potential benefits of creatine monohydrate supplementation in the elderly,” Curr. Opin. Clin. Nutr. Metab. Care, 3, 497–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. C. B. Thompson, “Apoptosis in the pathogenesis and treatment of disease,” Science, 267, 1456–1462 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. F. Van Brussel, J. J. Yang, and M. W. Seraydarian, “Isozymes of creatine kinase in mammalian cell cultures,” J. Cell Physiol., 116, No. 2, 221–226 (1983).

    Article  PubMed  Google Scholar 

  65. R. Ventura-Claper, A. Kuznetsov, V. Veksler, et al., “Functional coupling of creatine kinase in muscles: species and tissue specificity,” Mol. Cell. Biochem., 184, 231–247 (1998).

    Article  Google Scholar 

  66. T. Wallimann, M. Tokarska-Schlattner, and U. Schlattner, “The creatine kinase system and pleiotropic effects of creatine,” Amino Acids, 40, 1271–1296 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. T. Wallimann, G. Wegmann, H. Moser, et al., “High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells,” Proc. Natl. Acad. Sci. USA, 83, 3816–3819 (1986).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. G. D. Wells, H. Selvadurai, and I. Tein, “Bioenergetic provision of energy for muscular activity,” Pediatr. Respir. Rev., 10, 83–90 (2009).

    Article  Google Scholar 

  69. B. Wilken, J. M. Ramirez, I. Probst, et al., “Anoxic ATP depletion in neonatal mice brainstem is prevented by creatine supplementation,” Arch. Dis. Child. Fetal Neonatal. Edn., 82, 224–227 (2000).

    Article  Google Scholar 

  70. M. Wyss and R. Kaddarah-Daouk, “Creatine and creatine metabolism,” Physiol. Rev., 80, 1107–1213 (2000).

    CAS  PubMed  Google Scholar 

  71. M. Wyss and A. Schulze, “Health implication of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease?” Neuroscience, 112, No. 2, 243–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. S. Zhu, M. Li, B. E. Figueroa, et al., “Prophylactic creatinine administration mediates neuroprotection in cerebral ischemia in mice,” J. Neurosci., 24, No. 26, 5909–5912 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Kolpakova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 8, pp. 889–900, August, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolpakova, M.E., Veselkina, O.S. & Vlasov, T.D. Creatine in Cell Metabolism and Its Protective Action in Cerebral Ischemia. Neurosci Behav Physi 45, 476–482 (2015). https://doi.org/10.1007/s11055-015-0098-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0098-4

Keywords

Navigation