Skip to main content
Log in

The Functional Role of Neocortical Activity in the Processes of Interregional Interaction

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

In the context of concepts of the mechanisms of human cognitive activity addressing the functional role of neocortical gamma activity in these processes, scientific progress in the 21st century has involved at least three logically linked new directions: 1) combined recording of high-frequency oscillations in the gamma range (90–150 Hz) and functional magnetic resonance imaging has demonstrated a close correlation between the power levels of these oscillations at the recording site and the levels of blood oxygenation (BOLD responses – blood oxygenation level-dependent) in the corresponding areas, providing for assessment of power dynamics in relation to metabolic resources; 2) results of parallel evaluation of measures of gamma activity (frequency, bandwidth, amplitude) combined with both the magnitudes of BOLD responses and GABA concentrations measured by magnetic resonance spectroscopy have provided grounds for a new hypothesis relating to a subject’s individual characteristics; and 3) new methods for measuring the phase synchronicity of gamma frequencies have led to the discovery of the phenomenon of cross-frequency interactions between the phases of gamma oscillations and theta and alpha waves. A number of authors have regarded this phenomenon as the basis for interaction between different areas, mediated by various neural networks, which may bring us towards an understanding of various aspects of the question of the mechanisms of cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Anokhin, The Biology and Neurophysiology of the Conditioned Reflex, Meditsina, Moscow (1968).

    Google Scholar 

  2. Yu. V. Bushov, M. V. Svetlik, and E. P. Krutenkova, High-Frequency Electrical Brain Activity and the Perception of Time, Tomsk University Press, Tomsk (2009).

    Google Scholar 

  3. N. N. Danilova and S. V. Astaf’ev, “Attention in humans as a specific link between EEG rhythms and wave modulators of the cardiac rhythm,” Zh. Vyssh. Nerv. Deyat., 50, No. 5, 791–804 (2000).

    CAS  Google Scholar 

  4. V. N. Dumenko, “Functional significance of high-frequency components of brain electrical activity the processes forming internal images,” Zh. Vyssh. Nerv. Deyat., 52, No. 5, 539–550 (2002).

    CAS  Google Scholar 

  5. V. N. Dumenko, High-Frequency EEG Components and Operant Learning, Nauka, Moscow (2006).

    Google Scholar 

  6. V. N. Dumenko, “The phenomenon of spatial synchronization between cortical potentials over the wide frequency band 1–250 Hz,” Zh. Vyssh. Nerv. Deyat., 57, No. 5, 520–532 (2007).

    CAS  Google Scholar 

  7. V. N. Dumenko, “Functional heterogeneity of the gamma band of cortical potentials,” Zh. Vyssh. Nerv. Deyat., 62, No. 4, 401–415 (2012).

    CAS  Google Scholar 

  8. V. N. Dumenko, “Potentials for metric assessment of human EEG gamma activity,” Zh. Vyssh. Nerv. Deyat., 562, No. 6, 645–653 (2012).

    Google Scholar 

  9. V. N. Dumenko and M. K. Kozlov, “Baseline EEG gamma activity and evoked responses to facial stimuli in a model of the cognitive set,” Fiziol. Cheloveka, 37, No. 4, 26–34 (2011).

    PubMed  CAS  Google Scholar 

  10. V. N. Dumenko and M. K. Kozlov, “Dynamics of gamma power of event-related responses to a facial expression in conditions of loading on working memory,” Zh. Vyssh. Nerv. Deyat., 62,, No. 1, 20–32 (2012).

    CAS  Google Scholar 

  11. V. N. Kiroi, B. M. Vladimirskii, E. V. Aslanyan, et al., “Electrographic correlates of real and imaginary movements: spectral analysis,” Zh. Vyssh. Nerv. Deyat., 60, No. 5, 525–533 (2010).

    CAS  Google Scholar 

  12. M. N. Livanov, The Closure of Conditioned Associations. Electroencephalographic Studies of Higher Nervous Activity, USSR Academy of Sciences Press, Moscow (1962), pp. 174–186.

    Google Scholar 

  13. M. N. Livanov, Spatial Organization of Brain Processes, Nauka, Moscow (1972).

    Google Scholar 

  14. M. N. Livanov and V. N. Dumenko, “Neurophysiological aspects of studies of the systems organization of brain activity,” Usp. Fiziol. Nauk., 18, No. 3, 6–15 (1987).

    PubMed  CAS  Google Scholar 

  15. N. R. Minyaeva, Reflection of the Perception of Illusory Images in Parameters of Bioelectrical Brain Activity in Humans: Auth. Abstr. Dissert. Cand. Biol. Sci., Southern Federal University, Rostov-on-Don (2010).

    Google Scholar 

  16. I. P. Pavlov, “Common types of higher nervous activity in animals and humans,” in: Selected Works, USSR Academy of Sciences Press (1949), pp. 482–500.

  17. G. Ya. Roshchina V. I. Koroleva, and V. I. Davydov, “Changes in the high-frequency activity of rabbit brain biopotentials in the state of ‘animal hypnosis,’” Zh. Vyssh. Nerv. Deyat., 60, No. 3, 352–363 (2010).

    Google Scholar 

  18. E. N. Sokolov, “The question of gestalt in neurobiology, Zh. Vyssh. Nerv. Deyat., 46, No. 2, 229–245 (1996).

    CAS  Google Scholar 

  19. V. B. Strelets, Zh. V. Garakh, and V. Yu. Novototskii-Vlasov, “Comparative studies of the gamma rhythm in health, stress, and patients with first episodes of depression,” Zh. Vyssh. Nerv. Deyat., 56, No. 2, 219–227 (2006).

    CAS  Google Scholar 

  20. N. O. Timofeeva, I. I. Semikopnaya, B. V. Chernyshev, et al., “Tonic activity in the gamma rhythm range and attention in conditions of differentiation of stimuli with different presentation probabilities,” in: Proc. XXI Congress of the Society of Physiologists, Moscow–Kaluga (2010).

  21. D. Attwell and S. B. Laughlin, “An energy budget for signaling in the grey matter of the brain,” J. Cereb. Blood Flow Metabol., 21, 1133–1145 (2001).

    Article  CAS  Google Scholar 

  22. E. Basar and B. Guntgekin, “Emotional face expressions are differentiated with brain oscillations,” Int. J. Psychophysiol., 64, 91–100 (2007).

    Article  PubMed  Google Scholar 

  23. M. E. Bigal, H. Hetherington, J. Pan, et al., “Occipital levels of GABA are related to severe headaches in migraine,” Neurology, 70, 2078–2080 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. R. T. Canolty, E. Edwards, S. S. Dalal, et al., “High gamma power is phase-locked to theta oscillations in human neocortex,” Science, 313, 1626–1628 (2006).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. R. T. Canolty and R. T. Knight, “The functional role of cross-frequency coupling,” Trends Cogn. Sci., 14, No. 11, 506–515 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  26. J. A. Cardin, M. Carelen, K. Meletis, et al., “Driving fast-spiking cells induces gamma rhythm and controls sensory responses,” Nature, 459, No. 7247, 663–667 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. B. Cauli, K. Tong, A. Rancillac, et al., “Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways,” J. Neurosci., 24, No. 41, 8940–8949 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. I. Y. Choi, S. P. Lee, H. Merkle, and J. Shen, “In vivo detection of gray and white matter differences in GABA concentration in the human brain,” Neuroimage, 33, 85–93 (2006).

    Article  PubMed  Google Scholar 

  29. F. Crick and C Koch, “Are we aware of neural activity in primary visual cortex?” Nature, 375, No. 6527, 121–123 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. J. de France and D. F. Sheer, “Focused arousal 40-Hz and motor programming,” in: The EEG of Mental Activities, D. Giannitrapani and F. N. Murray (eds.), Plenum Press, New York (1988), pp. 153–168.

    Google Scholar 

  31. T. Demiralp, Z. Bayraktaroglu, D. Lenz, et al., “Gamma amplitudes are coupled to theta phase in human EEG during visual perception,” Int. J. Psychophysiol., 64, No. 1, 24–30 (2007).

    Article  PubMed  Google Scholar 

  32. S. M. Doesberg, A. B. Roggveen, K. Kitajo, and L. M. Ward, “Large-scale gamma band phase synchronization and selective attention,” Cereb. Cortex, 18, 386–396 (2008).

    Article  Google Scholar 

  33. T. H. Donner and M. Siegel, “A framework for local cortical oscillations patterns,” Trends Cogn. Sci., 15, No. 5, 191–199 (2011).

    Article  PubMed  Google Scholar 

  34. V. N. Dumenko and M. K. Kozlov, “Study of the EEG phenomenon of high-frequency bursts in the neocortical electrical activity of dogs in the process of alimentary instrumental learning,” Exp. Brain Res., 116, 539–547 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. R. A. Edden, S. D. Muthukumaraswamy, T. C. A. Freeman, and K. D. Singh, “Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex,” J. Neurosci., 29,. 15,721–15,726 (2009).

    Article  CAS  Google Scholar 

  36. W. J. Freeman, “The physiology of perception,” Sci. Amer., 264, 78–85 (1991).

    Article  PubMed  CAS  Google Scholar 

  37. W. J. Freeman and W. Schneider, “Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors,” Psychophysiology, 19, 44–57 (1982).

    Article  PubMed  CAS  Google Scholar 

  38. R. Freunberger, D. N. Nikolic, A. E. Rogie, and R. Desimone, “Modulation of oscillatory ml synchronization by selective visual attention,” Science, 291, 1560–1563 (2001).

    Article  Google Scholar 

  39. P. Fries, T. Womelsdorf, O. Oostenveld, and R. Desimone, “The effects of visual stimulations and selective visual attention on rhythmic neuronal synchronization neuron macaque area V4,” J. Neurosci., 28, No. 18, 4823–4835 (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. J. Frund, J. Schadow, N. A. Busch, et al., “Evoked gamma oscillations in human scalp EEG are test-retest reliable,” Clin. Neurophysiol., 118, 221–227 (2007).

    Article  PubMed  Google Scholar 

  41. C. M. Gray and D. A. McCormic, “Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex,” Science, 274, 109–113 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. B. Haider and D. A. McCormick, “Rapid neocortical dynamics: cellular and network mechanisms,” Neuron, 62, 171–189 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. C. S. Herrmann and S. Debener, “Simultaneous recording of EEG and BOLD responses: a historical perspective,” Int. J. Psychophysiol., 67, 161–168 (2008).

    Article  PubMed  Google Scholar 

  44. J. F. Hipp. A. K. Engel, and M. Siegel, “Oscillatory synchronization in large-scale cortical networks predicts perception,” Neuron, 69, No. 2, 387–396 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. E. M. Holz, M. Glennon, K. Prendergast, and P. Sauseng, “Theta-gamma phase synchronization during memory matching in visual working memory,” Neuroimage, 52, 326–335 (2010).

    Article  PubMed  Google Scholar 

  46. J. Jacobs and M. J. Kahana, “Neural representations of individual stimuli in humans revealed by gamma-band electrocorticographic activity,” J. Neurosci., 29, 10,203–10,214 (2009).

    Article  CAS  Google Scholar 

  47. J. Jacobs and M. Kahana, “Direct brain recordings fuel advances in cognitive electrophysiology,” Trends Cogn. Sci., 14, No. 4, 162–171 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  48. J. G. Jeffreys, R. D. Traub, and M. A. Whittington, “Neuronal network for induced ‘40 Hz’ rhythms,” Trends Neurosci., 19, 202–208 (1996).

    Article  Google Scholar 

  49. H. Jokeit and S. Makeig, “Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects,” Proc. Natl. Acad. Sci. USA, 91, 6339–6343 (1994).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. J. M. Jutas, P. Fries, and E. A. Buffalo, “Gamma-band synchronization in the macaque hippocampus and memory formation,” J. Neurosci., 29, No. 40, 12,521–12,531 (2009).

    Article  CAS  Google Scholar 

  51. D. H. Ingvar, “A top-down model for language perception and production,” in: Downwards Processes in the Perception Representation Mechanisms, C. Taddei-Ferretti and C. Musio (eds.), World Scientific, Singapore (1998), pp. 108–116.

    Google Scholar 

  52. D. A. Kaliukhovich and R. Vogels, “Stimulus repetition affects both strength and synchrony of macaque inferior temporal cortical activity,” J. Neurophysiol., 107, No. 12, 3509–3527 (2012).

    Article  PubMed  Google Scholar 

  53. J. P. Lachaux, P. Fonlupt, P. Kahane, et al., “Relationships between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG,” Hum. Brain Mapp., 28, 1368–1375 (2007).

    Article  PubMed  Google Scholar 

  54. J. P. Lachaux, M. George, C. Tallon-Baudry, et al., “The many faces of the gamma band response to complex visual stimuli,” Neuroimage, 25, 491–501 (2005).

    Article  PubMed  Google Scholar 

  55. J. P. Lachaux, E. Rodriguez, J. Muller-Gerking, et al., “Measuring phase-synchrony in brain signal,” Hum. Brain Mapp., 8, No. 4, 194–208 (1999).

    Article  PubMed  CAS  Google Scholar 

  56. M. Lauritzen, “Reading vascular changes in brain imaging: is dendritic calcium the key?” Nat. Rev. Neurosci., 6, 77–85 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. K. H. Lee, M. W. Leanne, M. Breakspear, and E. Gordon, “Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia,” Brain Res. Rev., 41, 57–78 (2003).

    Article  PubMed  Google Scholar 

  58. D. Lenz, K. Krauel, J. Schadow, et al., “Enhanced gamma-band activity in ADHD patients lacks correlations with memory performance found in healthy children,” Brain Res., 1235, 117–132 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. N. K. Logothetis, “The underpinnings of the BOLD functional magnetic resonance imaging signal,” J. Neurosci., 23, 3963–3971 (2003).

    PubMed  CAS  Google Scholar 

  60. N. K. Logothetis, “What we can do and what we cannot do with fMRI,” Nature, 453, 869–878 (2008).

    Article  PubMed  CAS  Google Scholar 

  61. L. Melloni, C. Molina, M. Pena, et al., “Synchronization of neural activity across cortical areas correlates with conscious perception,” J. Neurosci., 27, No. 11, 2858–2865 (2007).

    Article  PubMed  CAS  Google Scholar 

  62. L. Melloni, C. M. Schwiedrzik, M. Muller, et al., “Expectations change the signatures and timing of electrophysiological correlates of perceptual awareness,” J. Neurosci., 31, No. 4, 1386–1396 (2011).

    Article  PubMed  CAS  Google Scholar 

  63. H. M. Morgan, S. D. Muthukumaraswamy, C. S. Hibbs, et al., “Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination,” J. Neurophysiol., 106, No. 6, 3185–3194 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  64. M. H. Munk, P. R. Roelfsema, A. K. Engel, et al., “The role of reticular activation in the modulation of intracortical synchronization,” Science, 272, 271–273 (1996).

    Article  PubMed  CAS  Google Scholar 

  65. S. D. Muthukumaraswamy, C. J. Evans, R. A. Edden, et al., “Individual variability in the shape and amplitude of BOLD-HRF correlated with GABAergic inhibition,” Hum Brain Mapp., 33, No. 2, 455–465 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  66. S. D. Muthukumaraswamy and K. D. Singh, “Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex,” Neuroimage, 40, 1552–1560 (2008).

    Article  PubMed  Google Scholar 

  67. S. D. Muthukumaraswamy and K. D. Singh, “Functional decoupling of BOLD and gamma-band amplitudes in human primary visual cortex,” Hum. Brain Mapp., 30, 2000–2007 (2009).

    Article  PubMed  Google Scholar 

  68. S. D. Muthukumaraswamy, K. D. Singh, J. B. Swettenham, and D. R. Jones, “Visual gamma oscillations and evoked responses: Variability, repeatability and structural MRI correlates,” Neuroimage, 49, 3349–3357 (2010).

    Article  PubMed  Google Scholar 

  69. J. Niessing, B. Ebisch, K. E. Schmidt, et al., “Hemodynamic signals correlate tightly with synchronized gamma oscillations,” Science, 309, 948–951 (2005).

    Article  PubMed  CAS  Google Scholar 

  70. J. M. Palva, S. Palva, and K. Kaila, “Phase synchrony among neuronal oscillations in the human cortex,” J. Neurosci., 25, 3962–3972 (2005).

    Article  PubMed  CAS  Google Scholar 

  71. F. Pulvermuller, W. Lutzenberger, and H. Preisel, “Nouns and verbs in the intact brain: Evidence from event-related potentials and high-frequency cortical responses,” Cereb. Cortex, 9, 497–506 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. E. Rodriguez, N. George, J. P. Lachaux, et al., “Perceptions shadow: long-distance synchronization of human brain activity,” Nature, 397, 430–434 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. P. R. Roelfsema, A. K. Engel, P. Konig, and W. Singer, “The role of neuronal synchronization in response selection: A biological plausible theory of structured representation in the visual cortex,” J. Cogn. Neurosci., 8, No. 6, 603–625 (1996).

    Article  PubMed  CAS  Google Scholar 

  74. P. Sauseng, W. Klimesch, W. R. Gruber, and N. Birbaumer, “Cross-frequency phase synchronization, a brain mechanism of memory matching and attention,” Neuroimage, 40, 308–317 (2008).

    Article  PubMed  Google Scholar 

  75. T. R. Schneider, S. Debener, R. Oostenveld, and A. K. Engel, “Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming,” Neuroimage, 25, 491–501 (2005).

    Article  Google Scholar 

  76. P. B. Sedeberg, A. Schulze-Bonhage, J. R. Madsen, et al., “Gamma oscillations distinguish true from false memories,” Psychol. Sci., 18, 927–932 (2007).

    Article  Google Scholar 

  77. D. E. Sheer, “Biofeedback training of 40-Hz EEG and behavior,” in: Behavioral and Electrical Activity Plenum Press, New York (1975), pp. 325–367.

    Chapter  Google Scholar 

  78. M. Siegel, T. H. Donner, R. Oostenveld, et al., “Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention,” Neuron, 60, 709–719 (2008).

    Article  PubMed  CAS  Google Scholar 

  79. M. Siegel and P. Konig, “A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats,” J. Neurosci., 23, 4251–4260 (2003).

    PubMed  CAS  Google Scholar 

  80. M. Siegel, M. Warden, and E. Miller, “Phase-dependent neuronal coding of objects in short-term memory,” Proc. Natl. Acad. Sci. USA, 106, No. 50, 21,341–21,346 (2009).

    Article  CAS  Google Scholar 

  81. W. Singer, “Striving for coherence,” Nature, 397, 391–393 (1999).

    Article  PubMed  CAS  Google Scholar 

  82. W. Singer and C. M. Gray, “Visual feature integration and the temporal correlation hypothesis,” Ann. Rev. Neurosci., 18, 555–586 (1995).

    Article  PubMed  CAS  Google Scholar 

  83. P. N. Steinmetz, A. Roy, P. J. Fitzgerald, et al., “Attention modulates synchronized neuronal firing in primate somatosensory cortex,” Nature, 404, 187–190 (2000).

    Article  PubMed  CAS  Google Scholar 

  84. M. Stopfer, S. Bhagavan, B. H. Smith, and G. Laurent, “Impaired odour discrimination on desynchronization of odour-encoding neural assemblies,” Nature, 390, 70–75 (1997).

    Article  PubMed  CAS  Google Scholar 

  85. D. Struber, C. Basar-Eroglu, E. Hoff, and M. Stadler, “Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception,” Int. J. Psychophysiol., 38, 243–252 (2000).

    Article  PubMed  CAS  Google Scholar 

  86. C. Tallon-Baudry, “The roles of gamma-band oscillatory synchrony in human visual cognition,” Front. Biosci., 14, 321–332 (2009).

    Article  Google Scholar 

  87. C. Tallon-Baudry, O. Bertrand, F. Peronnet, and J. Pernier, “Induced gamma-band activity during the delay of a visual short-term memory task in humans,” J. Neurosci., 18, 4244–4255 (1998).

    PubMed  CAS  Google Scholar 

  88. K. Tanji, K. Suzuki, A. Iwata, et al., “High-frequency gamma-band activity in the basal temporal cortex during picture-naming and lexical-decision tasks,” J. Neurosci., 25, 3287–3293 (2005).

    Article  PubMed  CAS  Google Scholar 

  89. A. B. L. Tort, R. Komorowski, J. R. Manns, et al., “Theta-gamma coupling increases during the learning of item context associations,” Proc. Natl. Acad. Sci. USA, 106, No. 49, 20,942–20,947 (2009).

    Article  Google Scholar 

  90. A. B. L. Tort, R. Komorowski, H. Eichenbaum, and N. J. Kopell, “Measuring phase-amplitude coupling between neuronal oscillations of different frequencies,” J. Neurophysiol., 104, 1195–1210 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  91. V. L. Towle, N. A. Yoon, M. Castelle, et al., “ECoG gamma activity during a language task: differentiating expressive and receptive speech areas,” Brain, 131, 2013–2027 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  92. J. R. Vidal, M. Chaumon, J. K. O’Regan, and C. Tallon-Baudry, “Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals,” J. Cogn. Neurosci., 18, No. 11, 1850–1862 (2006).

    Article  PubMed  Google Scholar 

  93. B. Voytek, R. T. Canolty, A. Shestyuk, et al., “Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks,” Front. Hum. Neurosci., 4, 191, (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  94. X.-J. Wang, “Neurophysiological and computational principles of cortical rhythms in conition,” Physiol. Rev., 90, No. 3, 1195–1268 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  95. E. M. Whitham, T. Lewis, K. J. Pope, et al., “Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG,” Clin. Neurophysiol., 118, No. 8, 1877–1888 (2007).

    Article  PubMed  Google Scholar 

  96. E. M. Whitham, T. Lewis, K. J. Pope, et al., “Thinking activates EMG in scalp electrical recordings,” Clin. Neurophysiol., 119, No. 5, 1166–1175 (2008).

    Article  PubMed  Google Scholar 

  97. J. J. Wright, P. D. Bourke, and C. L. Chapman, “Synchronous oscillation in the cerebral cortex and object coherence: summation of basic electrophysiological findings,” Biol. Cybern., 83, 341–353 (2000).

    Article  PubMed  CAS  Google Scholar 

  98. V. Wyart and C. Tallon-Baudry, “Neural dissociation between visual awareness and spatial attention,” J. Neurosci., 28, No. 10, 2667–2679 (2008).

    Article  PubMed  CAS  Google Scholar 

  99. V. Wyart and C. Tallon-Baudry, “How ongoing fluctuations in human visual cortex predict perceptual awareness: baseline shift versus decision,” J. Neurosci., 29, 8715–8725 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. T. Zaehle, I. Fründ, J. Schadow, et al., “Inter- and intra-very covariations of hemodynamic and oscillatory gamma responses in the human cortex,” Front. Hum. Neurosci., 3, No. 10, 1–12 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Dumenko.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 1, pp. 3–20, January–February, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumenko, V.N. The Functional Role of Neocortical Activity in the Processes of Interregional Interaction. Neurosci Behav Physi 45, 239–251 (2015). https://doi.org/10.1007/s11055-015-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0063-2

Keywords

Navigation