Skip to main content
Log in

Assessment of Long-Term Sensorimotor Deficit after Cerebral Ischemia/Hypoxia in Neonatal Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

MRI studies showed that cerebral ischemia/hypoxia in neonatal rat pups applied using the Levine–Rice method induced unilateral lesions in the cerebral cortex, striatum, and hippocampus. Unilateral ischemic lesions led to long-term sensorimotor and behavioral impairments at 90–115 days after surgery on testing the animals in a battery of tests consisting of the cylinder, tapering beam, Montoya, and paw-placing tests. This combination of tests, along with MRI studies, provided reliable evaluation of long-term sensorimotor impairments in adult animals subjected to trauma in the neonatal period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Seredenin, D. N. Silachev, T. A. Gudasheva, et al., “Studies of the neuroprotective action of the dipeptide nerve growth factor mimetic GK-2 on induction of experimental focal ischemia in the basin of the middle cerebral artery,” Byull. Eksperim. Biol. Med., 151, No. 5, 518–519 (2011).

    Google Scholar 

  2. D. N. Silachev, A. A. Uchevatkin, Yu. A. Pirogov, et al., “Comparison of magnetic resonance tomography and triphenyltetrazolium detection of brain damage as methods for studying experimental focal ischemia,” Byull. Eksperim. Biol. Med., 147, No. 2, 223–226 (2009).

    Google Scholar 

  3. P. Andine, M. Thordstein, I. Kjellmer, et al., “Evaluation of brain damage in a rat model of neonatal hypoxic ischemia,” J. Neurosci. Meth., 35, 253–260 (1990).

    Article  CAS  Google Scholar 

  4. J. B. Bederson, L. H. Pitts, M. Tsuji, et al., “Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination,” Stroke, 17, 472–476 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. E. Bona, H. Hagberg, E. M. Loberg, et al., “Protective effects of moderate hypothermia after neonatal hypoxia-ischemia; short- and long-term outcome,” Pediatr. Res., 43, 738–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. E. Bona, B. B. Johansson, and H. Hagberg, “Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats,” Pediatr. Res., 42, 678–683 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. D. Corbett and S. Nurse, “The problem of assessing effective neuroprotection in experimental cerebral ischemia,” Prog. Neurobiol., 54, 531–548 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. M. De Ryck, J. Van Reempts, M. Borgers, et al., “Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats,” Stroke, 20, 1383–1390 (1989).

    Article  PubMed  Google Scholar 

  9. L. S. De Vries and M. J. Jongmans, “Long-term outcome after neonatal hypoxic-ischemic encephalopathy,” Arch. Dis. Child. Fetal Neonatol., 95, 220–224 (2010).

    Article  Google Scholar 

  10. M. Grabowski, P. Brundin, and B. B. Johansson, “Paw-reaching, sensorimotor, and rotational behavior after brain infarction in rats,” Stroke, 24, 889–895 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. T. Hayashi, M. Iwai, T. Ikeda, et al., “Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury,” Brain Res., 1038, 41–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. A. Hicks, T. Schallert, and J. Jolkkonen, “Cell-based therapies and functional outcome in experimental stroke,” Cell Stem Cell, 5, 139–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. C. E. Hobbs and D. E. Oorschot, “Neonatal rat hypoxia-ischemia: long-term rescue of striatal neurons and motor skills by combined antioxidant-hypothermia treatment,” Brain Pathol., 18, 443–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. A. J. Hunter, K. B. Mackay, and D. C. Rogers, “To what extent have functional studies of ischaemia in animals been useful in the assessment of potential neuroprotective agents?” Trends Pharmacol. Sci., 19, 59–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. E. M. Jansen and W. C. Low, “Long-term effects of neonatal ischemic-hypoxic brain injury on sensorimotor and locomotor tasks in rats,” Behav. Brain Res., 78, 189–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. J. Jolkkonen, K. Puurunen, S. Rantakomi, et al., “Behavioral effects of the alpha(2)-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats,” Eur. J. Pharmacol., 400, 211–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. S. Levine, “Anoxic-ischemic encephalopathy in rats,” Am. J. Pathol., 36, 1–17 (1960).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. A. Lun, B. Dominick, and J. Gross, “An animal model of perinatal hypoxic brain damage: behavioural aspects,” Biomed. Biochem. Acta, 49, 1021–1026 (1990).

    CAS  Google Scholar 

  19. C. P. Montoya, L. J. Campbell-Hope, K. D. Pemberton, and S. B. Dunnett, “The ‘staircase test:’ a measure of independent forelimb reaching and grasping abilities in rats,” J. Neurosci. Meth., 36, 219–228 (1991).

    Article  CAS  Google Scholar 

  20. K. Ono, M. Shimada, and T. Yamano, “Reorganization of the corticospinal tract following neonatal unilateral cortical ablation in rats,” Brain Dev., 12, 226–236 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. B. S. Reinoso and A. J. Castro, “A study of corticospinal remodelling using retrograde fluorescent tracers in rats,” Exp. Brain Res., 74, 387–394 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. J. E. Rice 3rd, R. C. Vannucci, and J. B. Brierley, “The influence of immaturity on hypoxic-ischemic brain damage in the rat,” Ann. Neurol., 9, 131–141 (1981).

    Article  PubMed  Google Scholar 

  23. T. Schallert, “Preoperative intermittent feeding or drinking regimens enhance post-lesion sensorimotor function,” in: Preoperative Events: Their Effects on Behavior Following Brain Damage, J. Schulkin (ed.), Lawrence Erlbaum Associates, New Jersey (1989), pp. 1–20.

    Google Scholar 

  24. T. Schallert, “Behavioral test for preclinical intervention assessment,” NeuroRx, 3, 497–504 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

  25. T. Schallert, “Orienting and placing,” in: The Behavior of the Laboratory Rat. A Handbook with Tests, K. B. Whishaw (ed.), Oxford University Test, New York (2005), pp. 129–140.

    Google Scholar 

  26. T. Schallert, S. M. Fleming, J. L. Leasure, et al., “CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury,” Neuropharmacology, 39, 777–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Stroke Therapy Academic Industry Round Table (STAIR) Participants, “Recommendations for standards regarding preclinical neuroprotective and restorative drug development,” Stroke, 30, 2752–2758 (1999).

    Article  Google Scholar 

  28. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS) Participants, “Stem cell therapies as an emerging paradigm in stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke,” Stroke, 40, 510–515 (2009).

    Article  Google Scholar 

  29. M. Takahashi, A. Vattanajun, T. Umeda, et al., “Large-scale reorganization of corticofugal fibers after neonatal hemiedecortication for functional restoration of forelimb movements,” Eur. J. Neurosci., 30, 1878–1887 (2009).

    Article  PubMed  Google Scholar 

  30. J. Towfighi, J. Y. Yager, C. Housman, and R. C. Vannucci, “Neuropathology of remote hypoxic-ischemic damage in the immature rat,” Acta Neuropathol., 81, 578–587 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. R. C. Vannucci, and S. J. Vannucci, “Perinatal hypoxic-ischemic brain damage: evolution of an animal model,” Dev. Neurosci., 27, 81–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. R. S. Young, J. Kolonich, C. L. Woods, and S. K. Yagel, “Behavioral performance of rats following neonatal hypoxia-ischemia,” Stroke, 17, 1313–1316 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Zorov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 63, No. 3, pp. 405–416, May–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silachev, D.N., Shubina, M.I., Yankauskas, S.S. et al. Assessment of Long-Term Sensorimotor Deficit after Cerebral Ischemia/Hypoxia in Neonatal Rats. Neurosci Behav Physi 44, 879–887 (2014). https://doi.org/10.1007/s11055-014-9996-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9996-0

Keywords

Navigation