Skip to main content
Log in

Involvement of the Wnt Signal Pathway in Hippocampal Plasticity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The Wnt signal pathway is a signal mechanism in which the key transmitter molecules are peptides of the Wnt family. This review analyzes data on the involvement of this transmembrane signal cascade (canonical and noncanonical) in structural and synaptic plasticity processes in the hippocampus. The mechanisms of the involvement of the Wnt signal pathway in the normal functioning of neuroplasticity is discussed, as are impairments to these mechanisms underlying cerebral pathologies. Particular attention is paid to what is from the points of view of plasticity and neuropathology one of the most important components of the canonical Wnt pathway – the enzyme glycogen synthase kinase (GSK-3β). Studies in this area have fundamental value as well as significant potential for translation, and the key components of the Wnt pathway are potential targets for the development of pathogenetically based treatments for socially important neurological and mental diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Avila, F. J. Sepulveda, C. F. Burgos, et al., “Canonical Wnt3a modulates intracellular calcium and enhances excitatory neurotransmission in hippocampal neurons,” J. Biol. Chem., 285, No. 24, 18,939–18,947 (2010).

    Article  CAS  Google Scholar 

  2. V. Beaumont, S. A. Thompson, F. Choudhry, et al., “Evidence for an enhancement of excitatory transmission in adult CNS by Wnt signaling pathway modulation,” Mol. Cell. Neurosci., 35, No. 4, 513–524 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. F. Cai, F. Wang, F. K. Lin, et al., “Redox modulation of long-term potentiation in the hippocampus via regulation of the glycogen synthase kinase-3beta pathway,” Free Radic. Biol. Med., 45, No. 7, 964–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. W. Cerpa, A. Gambrill, N. C. Inestrosa, and A. Barria, “Regulation of NMDA-receptor synaptic transmission by Wnt signaling,” J. Neurosci., 31, No. 26, 9466–9471 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. J. Chen, C. S. Park, and S. J. Tang, “Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation,” J. Biol. Chem., 281, No. 17, 11,910–11,916 (2006).

    Article  CAS  Google Scholar 

  6. L. Conboy, C. M. Seymour, M. P. Monopoli, et al., “Notch signaling becomes transiently attenuated during long-term memory consolidation in adult Wistar rats,” Neurobiol. Learn. Mem., 88, No. 3, 342–351 (2007).

    CAS  PubMed  Google Scholar 

  7. I. Dewachter, L. Ris, S. Croes, et al., “Modulation of synaptic plasticity and Tau phosphorylation by wild-type and mutant presenilin1,” Neurobiol. Aging, 29, No. 5, 639–652 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. J. Du, Y. Wei, L. Liu, et al., “A kinesin signaling complex mediates ability of GSK-3beta to affect mood-associated behaviors,” Proc. Natl. Acad. Sci. USA, 107, No. 25, 11,573–11,578 (2010).

    Article  CAS  Google Scholar 

  9. C. Fuerer and R. Nusse, “Lentiviral vectors to prove and manipulate the Wnt signaling pathway,” PLoS One, 5, No. 2, e9370 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  10. K. P. Giese, “GSK-3: a key player in neurodegeneration and memory,” IUBMB Life, 61, No. 5, 516–521 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. I. A. Graef, P. G. Mermelstein, K. Stankunas, et al., “L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons,” Nature, 401, No. 6754, 703–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. M. Gómez Ravetti, O. A. Rosso, R. Berretta, and P. Moscato, “Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus’ gene expression profiles in Alzheimer’s disease,” PLoS One, 5, No. 4, e10153 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  13. J. G. Hong, D. H. Kim, C. H. Lee, et al., “GSK-3β activity in the hippocampus is required for memory retrieval,” Neurobiol. Learn. Mem., 98, No. 2, 122–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. C. Hooper, V. Markevich, F. Plattner, et al., “Glycogen synthase kinase-3 inhibition is integral to long-term potentiation,” Eur. J. Neurosci., 25, No. 1, 81–86 (2007).

    Article  PubMed  Google Scholar 

  15. S. Jessberger, R. E. Clark, N. J. Broadbent, et al., “Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats,” Learn. Mem., 16, No. 2, 147–154 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  16. S. Jimenez, M. Torres, M. Vizuete, et al., “Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha [sApp(alpha)] by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer’s mouse model,” J. Biol. Chem., 286, No. 21, 18,414–18,425 (2011).

    Article  CAS  Google Scholar 

  17. U. G. Kang, M. S. Roh, J. R. Jung, et al., “Activation of protein kinase B (Akt) signaling after electroconvulsive shock in the rat hippocampus,” Prog. Neuropsychopharmacology Biol. Psychiatry, 28, No. 1, 41–44 (2004).

    Article  CAS  Google Scholar 

  18. D. U. Kumar and H. Devaraj, “Expression of Wnt3a, β-catenin, cyclin D1, and PCNA in mouse dentate gyrus subgranular zone (SGZ): a possible role of Wnt pathway in SGZ neural stem cell proliferation,” Folia Biol. (Praha), 58, No. 3, 115–120 (2012).

    CAS  Google Scholar 

  19. S. Li, S. Hong, N. E. Shepardson, D. M. Walsh, et al., “Soluble oligomers of amyloid beta protein facilitate long-term depression by disrupting neuronal glutamate uptake,” Neuron, 62, No. 6, 788–801 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. T. Ma, N. Tzavaras, P. Tsokas, et al., “Synaptic stimulation of mTOR is mediated by Wnt signaling and regulation of glycogen synthase,” J. Neurosci., 31, No. 48, 17,537–17,546 (2011).

    Article  CAS  Google Scholar 

  21. T. Miyaoka, H. Seno, and H. Ishino, “Increased expression of Wnt-1 in schizophrenic brains,” Schizophr. Res., 38, No. 1, 1–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. D. C. Morris, Z. G. Zhang, Y. Wang, et al., “Wnt expression in the adult rat subventricular zone after stroke,” Neurosci. Lett., 418, No. 2, 170–174 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. D. H. Oh, Y. C. Park, and S. H. Kim, “Increased glycogen synthase kinase-3β mRNA level in the hippocampus of patients with major depression: a study using the Stanley neuropathology consortium integrative database,” Psychiatry Investig., 7, No. 3, 202–207 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  24. S. Peineau, S. C. Nicolas, Z. A. Bortolotto, et al., “A systemic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine-threonine kinases,” Mol. Brain, 2, 22 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  25. J. Prickaerts, D. Moechars, K. Cryns, et al., “Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania,” J. Neurosci., 26, No. 35, 9022–9029 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. W. B. Rowe, E. M. Blalock, K. C. Chen, et al., “Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats,” J. Neurosci., 27, No. 12, 3098–3110 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. M. Sieber-Blum, “Ontogeny and plasticity of adult hippocampal neural stem cells,” Dev. Neurosci., 25, No. 2–4, 273–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. A. Shruster, T. Ben-Zur, E. Melamed, and D. Offen, “Wnt signaling enhances neurogenesis and improves neurological function after focal ischemic injury,” PLoS One, 7, No. 7, e40843 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. R. Silva, A. R. Mesquita, J. Nessa, et al., “Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta,” Neuroscience, 152, No. 3, 656–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. A. M. Stranahan, K. Lee, K. G. Becker, et al., “Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice,” Neurobiol. Aging, 31, No. 11, 1937–1949 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. A. Szamosi, O. Kelemen, and S. Kéri, “Hippocampal volume and the AKT signaling system in first-episode schizophrenia,” J. Psychiatr. Res., 46, No. 3, 279–284 (2012).

    Article  PubMed  Google Scholar 

  32. N. Tabatadze, C. Tomas, R. McGonigal, et al., “Wnt transmembrane signaling and long-term spatial memory,” Hippocampus, 22, No. 6, 1228–1241 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. L. Varela-Nallar, V. T. Ramirez, C. Gonzalez-Billault, and N. C. Inestrosa, “Frizzled receptors in neurons: From growth cones to the synapse,” Cytoskeleton (Hoboken), 69, No. 7, 528–534 (2012).

    Article  CAS  Google Scholar 

  34. L. Varela-Nallar, I. E. Alfaro, F. G. Serrano, et al., “Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses,” Proc. Natl. Acad. Sci. USA, 107, No. 49, 21,164–21,169 (2010).

    Article  CAS  Google Scholar 

  35. L. Varela-Nallar, C. P. Gabowsi, I. E. Alfaro, et al., “Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function,” Neural Dev., 4, 41 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  36. L. C. Wei, Y. X. Ding, Y. H. Liu, et al., “Low-dose radiation stimulates Wnt/β-catenin signaling, neural stem cell proliferation and neurogenesis of the mouse hippocampus in vitro and in vivo,” Curr. Alzheimer Res., 9, No. 3, 278–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Y. F. Xie, J. C. Belrose, G. Lei, et al., “Dependence of NMDA/GSK-3β mediated plasticity on TRPM2 channels at hippocampal CA3-CA1 synapses,” Mol. Brain, 4, 44 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. X. Xu, M. Zhan, W. Dan, et al., “Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender,” Genome Biol., 8, No. 11, R234 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  39. R. Zhou, P. Yuan, Y. Wang, et al., “Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers,” Neuropsychopharmacology, 34, No. 6, 1395–1405 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. L. Q. Zhu, S. H. Wang, D. Liu, et al., “Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments,” J. Neurosci., 27, No. 45, 12,211–12,220 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Markevich.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 12, pp. 1460–1470, December, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markevich, V.A., Salozhin, S.V. & Gulyaeva, N.V. Involvement of the Wnt Signal Pathway in Hippocampal Plasticity. Neurosci Behav Physi 44, 810–816 (2014). https://doi.org/10.1007/s11055-014-9988-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9988-0

Keywords

Navigation