Skip to main content
Log in

The Primary Motor and the Primary Sensory Cortex – Two Local Cortical Centers of the Sensorimotor Representation of the Body

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Ipsilateral associative connections between different fields in the primary sensory (S1) and primary motor (M1) areas of the cortex were studied in 25 adult cats after local coagulation and infusion of horseradish peroxidase. The distributions of associative M1 and S1 fibers were found to correspond to the margins of the somatotopic representations of different parts of the body. The fields within M1 (4y, 6ab) and S1 (1, 2, 3a, 3b), which have different morphofunctional organization, were not connected by a system of associative fibers crossing the cytoarchitonic boundaries of these fields. The primary sensory (S1) and motor (M1) areas of cortex did not have reciprocal connections. Occasional fibers connected neighboring fields in M1 and A1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Badalyan, Dzh. S. Sarkisyan, and V. I. Pogosyan, “Corticocortical and thalamocortical sources of afferentation to the representation area of the radial nerve in the primary somatosensory cortex of the cat,” Biol. Zh. Armenii, 48, No. 2, 18–22 (1995).

    Google Scholar 

  2. N. M. Ipekchyan, “Characteristics of corticocortical ipsilateral connections of the primary, secondary, and tertiary sensorimotor zones in the cat brain,” Morfologiya, 139, No. 1, 22–26 (2011).

    Google Scholar 

  3. N. M. Ipekchyan and O. G. Baklavadzhyan, “The projections of fields 5 and 7 to subdivisions of the sensorimotor area of the cortex in the cat brain,” Neirofiziologiya, 20, No. 3, 319–326 (1988).

    Google Scholar 

  4. V. Mountcastle, “An organizing principle for cerebral function: the unit module and the distributed system,” in: The Mindful Brain [Russian translation], Mir, Moscow (1981), pp. 15–67.

  5. A. A. Skoromets, A. P. Skoromets, and T. A. Skoromets, “Topical diagnosis of focal lesions of the nervous system,” in: Nervous Diseases [in Russian], MEDpressInform, Moscow (2008), pp. 197–220.

  6. H. Asanuma, C. D. Larsen, and H. Yumiya, “Direct sensory pathways to the motor cortex in monkey:A basis of cortical reflexes,” in: Integration in Nervous System [in Russian], Igaku-Shoin, Tokyo (1979), pp. 223–238.

  7. H. Asanuma, C. D. Larsen, and P. Zarzecki, “Peripheral input pathways projecting to the motor cortex in the cat,” Brain Res., 172, No. 2, 197–208 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. H. Asanuma and I. Rosen, “Functional role of afferent input to monkey motor cortex,” Brain Res., 40, No. 1, 3–5 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. C. Brodmann, Vergleichende Lokalizationslehre der Groshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues [in German], J. A. Barth, Leipzig, (1925).

    Google Scholar 

  10. J. Castaldo, J. Rodgers, A. Rae-Grant, et al., “Diagnosis and neuroimaging of acute stroke producing distal arm monoparesis,” J. Stroke Cerebrovasc. Res., 12, No. 6, 253–258 (2003).

    Article  Google Scholar 

  11. E. A. Fridman, T. Hanakawa, M. Chung, et al., “Reorganization of the human ipsilateral premotor cortex after stroke,” Brain, 127, No. 4, 747–758 (2004).

    Article  PubMed  Google Scholar 

  12. C. C. Gatter and T. P. S. Powell, “The intrinsic connections of the cortex of area 4 of the monkey,” Brain, 101, No. 3, 513–541 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. R. Hassler and C. Muhs-Clement, “Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze,” J. Hirnforsch., 6, No. 4, 377–420 (1964).

    Google Scholar 

  14. P. B. Johnson, A. Angelucci, R. Ziparo, et al., “Segregation and overlap of callosal and association neurons in frontal and parietal cortices of primate: a spectral and coherency analysis,” J. Neurosci., 9, No. 7, 2313–2326 (1989).

    CAS  PubMed  Google Scholar 

  15. E. G. Jones, I. D. Coulter, and S. H. C. Hendry, “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys,” J. Comp. Neurol., 181, No. 2, 291–341 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. E. G. Jones and T. P. S. Powell, “The ipsilateral connexions of the somatic sensory areas in the cat,” Brain Res., 9, No. 1, 71–94 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. E. G. Jones and T. P. S. Powell, “Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions,” Brain, 19, No. 3, 477–502 (1969).

    Article  Google Scholar 

  18. E. G. Jones and T. P. S. Powell, “An anatomical study of converging sensory pathways within the cerebral cortex of the monkey,” Brain, 93, No. 4, 790–820 (1970).

    Article  Google Scholar 

  19. E. G. Jones and S. P. Wise, “Size, laminar and columnar distribution of efferent cells in sensory-motor cortex of monkey,” J. Comp. Neurol., 175, No. 4, 391–438 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. C. Kawamura and C. Otani, “Corticocortical fiber connections in the cat cerebrum: the frontal region,” J. Comp. Neurol., 139, No. 4, 423–448 (1970).

    Article  CAS  PubMed  Google Scholar 

  21. M. M. Mesulam, “Tetramethylbenzidine for HRP neurochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem., 26, No. 2, 106–117 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. W. J. H. Nauta and P. A. Gygax, “A silver impregnation of degenerating axons in the central nervous system: a modified technic,” Stain Technol., 29, No. 1, 91–93 (1954).

    CAS  PubMed  Google Scholar 

  23. A. Nieoullon and L. Rispal-Padel, “Somatotopic localization in cat motor cortex,” Brain Res., 105, No. 3, 405–422 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. L. L. Porter, “Somatosensory input onto pyramidal tract neurons in rodent motor cortex,” Neuroreport, 7, No. 14, 2309–2315 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. C. N. Woolsey, “Organization of somatic sensory and motor areas of the cerebral cortex,” in: Biological and Biochemical Bases of Behavior, University of Wisconsin Press, Madison (1958), pp. 63–81.

  26. H. Yumiya and C. Chez, “Specialized subregions in the cat motor cortex: anatomical demonstration of differential projections to the rostral and causal sectors,” Exp. Brain Res., 53, No. 2, 259–276 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ipekchyan.

Additional information

Translated from Morfologiya, Vol. 143, No. 2, pp. 7–12, March–April, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ipekchyan, N.M., Badalyan, S.A. The Primary Motor and the Primary Sensory Cortex – Two Local Cortical Centers of the Sensorimotor Representation of the Body. Neurosci Behav Physi 44, 455–460 (2014). https://doi.org/10.1007/s11055-014-9932-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9932-3

Keywords

Navigation