Skip to main content
Log in

Molecular Mechanisms of the Selection of Movement Direction by Mesenchymal Cells

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Cell migration is an important and fundamental process. It underlies embryonic development, immune responses, and the repair and regeneration of damaged tissues. Impairments to migration are linked with many important diseases, such as tumor metastasis. The direction of migration can be regulated both by extracellular and intracellular factors. In the case of chemical extracellular factors, the directional migration of cells is called chemotaxis. This review presents a current model of the mechanisms selecting the direction of movement of mesenchymal cells, and analogies and comparisons are made with the mechanisms of chemotaxis in well studied ameboid cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GDP:

guanosine diphosphate

GTP:

guanosine triphosphate

MAPK:

mitogen-activated protein kinase

NADPH:

reduced nicotinamide adenine dinucleotide phosphate

cAMP:

cyclic adenosine monophosphate

cGMP:

cyclic guanosine monophosphate

Akt/PKB:

protein kinase B also known as Akt

DAG:

diacylglyceride

ERK1/2:

extracellular signal-regulated kinase)

fMLP:

N-formylmethionyl-leucyl-phenylalanine

GPCR:

G-protein coupled receptors

Grb2:

growth factor receptor-bound protein 2

IP3 :

inositol triphosphate

LEFI:

the “local excitation global inhibition” model

mTORC2:

mammalian target of rapamycin complex 2

PDGF:

platelet-derived growth factor

PI3 kinase:

phosphatidylinositol-3′-kinase

PI-3,4-P2 :

phosphatidylinositol-(3,4)-biphosphate

PI-4,5-P2 :

phosphatidylinositol-(4,5)-biphosphate

PIP3 :

phosphatidylinositol-(3,4,5)-triphosphate

PLA2:

phospholipase A2

PTB domain:

phosphotyrosine-binding domain

PTEN:

phosphatase and tensin homolog deleted on chromosome 10

RTK:

tyrosine kinase receptor

Ras:

a small GTPase

SH2 domain:

Src homology domain)

SHIP:

Src homology 2 (SH2)-containing phosphatase

Sos:

guanine nucleotide exchange factor for small Ras (contraction of Son of Sevenless)

Src:

tyrosine kinase (name derived from “sarcoma”).

References

  1. A. V. Vorotnikov, “Chemotaxis: movement, direction, control,” Usp. Biol. Khim., 51, 335–400 (2011).

    Google Scholar 

  2. V. A. Tkachuk, P. A. Tyurin-Kuz’min, V. V. Belousov, and A. V. Vorotnikov, “Hydrogen peroxide as a new second messenger,” Biol. Membrany, 29, 21–37 (2012).

    CAS  Google Scholar 

  3. P. A. Tyurin-Kuz’min, K. M. Agaronyan, Ya. I. Morozov, et al., “NAD(P)H oxidase regulates EGF-dependent cell proliferation via a mechanism distinct from ERK1/2 MAP kinase activation,” Biofizika, 55, 1048–1056 (2010).

    Google Scholar 

  4. S. J. Annesley and P. R. Fisher, “Dictyostelium discoideum – a model for many reasons,” Mol. Cell. Biochem., 329, 73–91 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Arai, T. Shibata, S. Matsuoka, et al., “Self-organization of the phosphatidylinositol lipids signaling system for random cell migration,” Proc. Natl. Acad. Sci. USA, 107, 12,399–12,404 (2010).

    Article  Google Scholar 

  6. A. Bellacosa, J. R. Testa, S. P. Staal, and P. N. Tsichlis, “A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region,” Science, 254, 274–277 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. L. Bosgraaf and P. J. Van Haastert, “Navigation of chemotactic cells by parallel signaling to pseudopod persistence and orientation,” PLoS One, 4, e5252 (2009).

    Article  CAS  Google Scholar 

  8. L. Bosgraaf and P. J. Van Haastert, “The ordered extension of pseudopodia by amoeboid cells in the absence of external cues,” PLoS ONE, 4, e5253 (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. M. D. Brown and D. B. Sacks, “Compartmentalised MAPK pathways,” Handb. Exp. Pharmacol., 205–235 (2008).

  10. H. Cai, “Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences,” Cardiovasc. Res., 68, 26–36 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. H. Cai, S. Das, Y. Kamimura, et al., “Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis,” J. Cell Biol., 190, 233–245 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. L. C. Cantley, “The phosphoinositide 3-kinase pathway,” Science, 296, 1655–1657 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. L. A. Cary, R. A. Klinghoffer, C. Sachsenmaier, and J. A. Cooper, “SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading,” Mol. Cell. Biol., 22, 2427–2440 (2002).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. L. Chen, M. Iijima, M. Tang, et al., “PLAS and PI3K/PTEN pathways act in parallel to mediate chemotaxis,” Dev. Cell., 12, 603–614 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. J. den Hertog, A. Groen, and T. van der Wijk, “Redox regulation of protein tyrosine phosphatases,” Arch. Biochem. Biophys., 434, 11–15 (2005).

    Article  CAS  Google Scholar 

  16. J. M. Denu and K. G. Tanner, “Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation,” Biochemistry, 37, 5633–5642 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. P. Devreotes and C. Janetopoulos, “Eukaryotic chemotaxis: distinctions between directional sensing and polarization,” J. Biol. Chem., 278, 20,445–20,448 (2003).

    Article  CAS  Google Scholar 

  18. P. Devreotes and S. H. Zigmond, “Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium,” Annu. Rev. Cell. Biol., 4, 649–686 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. M. C. Frame, “Src in cancer: deregulation and consequences for cell behaviour,” Biochem. Biophys. Acta 1602, 114–130 (2002).

    PubMed  CAS  Google Scholar 

  20. S. Funamoto, R. Meili, S. Lee, et al., “Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis,” Cell, 109, 611–623 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. M. Geiszt and T. L. Leto, “The Nox family of NAD(P)H oxidases: host defense and beyond,” J. Biol. Chem., 279, 51,715–51,718 (2004).

    Article  CAS  Google Scholar 

  22. E. Giannone, F. Buricchi, G. Raugeri, et al., “Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth,” Mol. Cell. Biol., 25, 6391–6403 (2005).

    Article  CAS  Google Scholar 

  23. P. T. Hawkins, K. E. Anderson, K. Davidson, and L. R. Stephens, “Signalling through Class I PI2Ks in mammalian cells,” Biochem. Soc. Trans., 34, 647–662 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes. Dev., 18, 1926–1945 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. S. J. Heasman and A. J. Ridley, “Mammalian Rho GTPases: new insights into their functions from in vivo studies.” Nat. Rev. Mol. Cell. Biol., 9, 690–701 (2008).

    Article  PubMed  CAS  Google Scholar 

  26. P. A. Iglesias and A. Levchenko, “Modeling the cell’s guidance system,” Sci. STKE., re12 (2002).

  27. M. Iijima and P. Devreotes, “Tumor suppressor PTEN mediates sensing of chemoattractant gradients,” Cell, 109, 599–610, (2002).

    Article  PubMed  CAS  Google Scholar 

  28. C. Janetopoulos and R. A. Firtel, “Directional sensing during chemotaxis,” FEBS Lett., 582, 2075–2085, (2008).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. C. Janetopoulos, T. Jin, and P. Devreotes, “Receptor-mediated activation of heterotrimeric G-proteins in living cells,” Science, 291, 2408–2411, (2001).

    Article  PubMed  CAS  Google Scholar 

  30. C. Janetopoulos, L. Ma, P. N. Devreotes, and P. A. Iglesias, “Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton,” Proc. Natl. Acad. Sci. USA, 101, 8951–8956, (2004).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. E. Karsenti, “Self-organization in cell biology: a brief history,” Nat. Rev. Mol. Cell. Biol., 9, 255–262, (2008).

    Article  PubMed  CAS  Google Scholar 

  32. J. Kwon, S. R. Lee, K. S. Yang, et al., “Reversible and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors,” Proc. Natl. Acad. Sci. USA, 101, 16,419–16,424, (2004).

    Article  CAS  Google Scholar 

  33. T. Lammermann and M. Sixt, “Mechanical modes of ‘amoeboid’ cell migration,” Curr. Opin. Cell. Biol., 21, 636–644, (2009).

    Article  PubMed  CAS  Google Scholar 

  34. I. Lassing, F. Schmitzberger, M. Bjornstedt, et al., “Molecular and structural basis for redox regulation of beta-actin,” J. Mol. Biol., 370, 331–348, (2007).

    Article  PubMed  CAS  Google Scholar 

  35. D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell, 84, 359–369, (1996).

    Article  PubMed  CAS  Google Scholar 

  36. S. R. Lee, K. S. Yang, J. Kwon, et al., “Reversible inactivation of the tumor suppressor PTEN by H2O2,” J. Biol. Chem., 277, 20336–20342, (2022).

    Article  CAS  Google Scholar 

  37. J. Li, M. Stouffs, L. Serrander, et al., “The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation,” Mol. Biol. Cell, 17, 3978–3988, (2006).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. L. Liu, S. Das, W. Losert, and C. A. Parent, “mMTORC2 regulates neutrophil chematoxis in a camp-and RhoA-dependent fashion,” Dev. Cell, 19, 845–857, (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, “Cell movement is guided by the rigidity of the substrate,” Biophys. J., 79, 144–152, (2000).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. T. Maehama and J. E. Dixon, “PTEN: a tumour suppressor that functions as a phospholipid phosphatase,” Trends Cell. Biol., 9, 125–128, (1999).

    Article  PubMed  CAS  Google Scholar 

  41. N. M. Mishina, P. A. Tyurin-Kuzmin, K. N. Markvicheva, et al., “Does cellular hydrogen peroxide diffuse or act locally?” Antioxid. Redox Signal, 141, 1–7, (2011).

    Article  CAS  Google Scholar 

  42. M. Moes, J. Boonstra, and E. Regan-Klapisz, “Novel role of cPLA(2)alpha in membrane and actin dynamics,” Cell. Mol. Life Sci., 67, 1547–1557, (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. A. Narang, K. K. Subramanian, and D. A. Lauffenburger, “A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics,” Ann. Biomed. Eng., 29, 677–691, (2001).

    Article  PubMed  CAS  Google Scholar 

  44. P. Niethammer, C. Grabner, A. T. Look, and T. J. Mitchison, “A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish,” Nature, 459, 996–999, (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. V. Niggli, “Signaling to migration in neutrophils: importance of localized pathways,” Int. J. Biochem. Cell. Biol., 35, 1619–1638, (2003).

    Article  PubMed  CAS  Google Scholar 

  46. M. Nishio, K. Watanabe, J. Sasaki, et al., “Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHP1,” Nat. Cell. Biol., 9, 36–44, (2007).

    Article  PubMed  CAS  Google Scholar 

  47. R. Pankov, Y. Endo, S. Even-Ram, et al., “A Rac switch regulates random versus directionally persistent cell migration,” J. Cell. Biol., 170, 793802, (2005.)

    Article  CAS  Google Scholar 

  48. T. Pawson, G. D. Gish, and P. Nash, “SH2 domains, interaction modules and cellular wiring,” Trends Cell. Biol., 11, 504–511, (2011).

    Article  Google Scholar 

  49. M. Postma and P. J. Van Haastert, “A diffusion-translocation model gradient sensing by chemotactic cells,” Biophys. J., 81, 1314–1323, (2001).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. W. J. Rappel, P. J. Thomas, H. Levine, and W. F. Loomis, “Establishing direction during chemotaxis in eukaryotic cells,” Biophys. J., 83, 1361–1367, (2002).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. A. J. Ridley, “Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking,” Trends Cell Biol., 16, 522–529, (2006).

    Article  PubMed  CAS  Google Scholar 

  52. A. J. Ridley, M. A. Schwartz, K. Burridge, et al., “Cell migration: integrating signals from front to back,” Science, 302, 1704–1709, (2003).

    Article  PubMed  CAS  Google Scholar 

  53. P. Rodriguez-Viciana, P. H. Warne, R. Dhand, et al., “Phosphatidylinositol-3-OH kinase as a direct target of Ras,” Nature, 370, 527–532, (1994).

    Article  PubMed  CAS  Google Scholar 

  54. A. San Martin and K. K. Griendling, “Redox control of vascular smooth muscle migration,” Antioxid. Redox Signal, 12, 625–640, (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. D. D. Sarbassov, S. M. Ali, D. H. Kim, et al., “Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton,” Curr. Biol., 14, 1296–1302, (2004).

    Article  PubMed  CAS  Google Scholar 

  56. D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, “Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex,” Science, 307, 1098–1101, (2005).

    Article  PubMed  CAS  Google Scholar 

  57. A. T. Sasaki, C. Janetopoulos, S. Lee, et al., “G protein-independent Ras/PI3K/F-actin circuit basic cell motility,” J. Cell. Biol., 178, 185–191, (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. I. C. Schneider and J. M. Haugh, “Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts,” J. Cell. Biol., 171, 883–893, (2005).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. H. Seppa, G. Grotendorst, S. Seppa, et al., “Platelet-derived growth factor in chemotactic for fibroblasts,” J. Cell. Biol., 92, 584–588, (1982).

    Article  PubMed  CAS  Google Scholar 

  60. G. Servant, O. D. Weiner, E. R. Neptune, et al., “Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis,” Mol. Biol. Cell., 10, 1163–1178, (1999).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. A. Sorkin and M. von Zastrow, “Endocytosis and signaling: intertwining molecular networks,” Nat. Rev. Mol. Cell. Biol., 10, 609–622, (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. S. Srinivasan, F. Wang, S. Glavas, et al., “Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis,” J. Cell. Biol., 160, 375–385, (2003).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. K. F. Swaney, C. H. Huang, and P. N. Devreotes, “Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity,” Annu. Rev. Biophys., 39, 265–289, (2010).

    Article  PubMed  CAS  Google Scholar 

  64. M. Ushio-Fukai, “Redox signaling in angiogenesis: role of NADPH oxidase,” Cardiovasc. Rev., 71, 226–235, (2006).

    Article  CAS  Google Scholar 

  65. P. J. Van Haastert, “How cells use pseudopods for persistent movement and navigation,” Sci. Signal., 4, pe6, (2011).

  66. B. Vanhaesebroeck, S. J. Leevers, G. Panayotou, and M. D. Waterfield, “Phosphoinositide 3-kinases: a conserved family of signal transducers,” Trends Biochem. Sci., 22, 267–272, (1997).

    Article  PubMed  CAS  Google Scholar 

  67. J. M. Vasiliev, “Cytoskeletal mechanisms responsible for invasive migration of neoplastic cells,” Int. J. Dev. Biol., 48, 425–439, (2004).

    Article  PubMed  CAS  Google Scholar 

  68. D. M. Veltman and P. J. van Haastert, “The role of cGMP and the rear of the cell in Dictyostelium chemotaxis and cell streaming,” J. Cell. Sci., 121, 120–127, (2008).

    Article  PubMed  CAS  Google Scholar 

  69. M. Vicente-Manzanares, X. Ma, R. S. Adelstein, and A. R. Horwitz, “Non-muscle myosin II takes center stage in cell adhesion and migration,” Nat. Rev. Mol. Cell. Biol., 10, 778–790, (2009).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. M. von Zastrow and A. Sorkin, “Signaling on the endocytic pathway,” Curr. Opin. Cell. Biol., 19, 436–445, (2007).

    Article  CAS  Google Scholar 

  71. M. C. Weiger, S. Ahmed, E. S. Welt, and J. M. Haugh, “Directional persistence of cell migration coincides with stability of asymmetric intracellular signaling,” Biophys. J., 98, 67–75, (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. M. C. Weiger, C. C. Wang, M. Krajcovic, et al., “Spontaneous 3-kinase signaling dynamics drive spreading and random migration of fibroblasts,” J. Cell. Sci., 122, 313–323, (2009.)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. O. D. Weiner, P. O. Neilsen, G. D. Prestwich, et al., “A PtdInsP(3)-and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity,” Nat. Cell. Biol., 4, 509513, (2002).

    Article  CAS  Google Scholar 

  74. E. S. Welf, S. Ahmed, H. E. Johnson, et al., “Migrating fibroblasts reorient directionality by a metastable, PI3K-dependent mechanism,” J. Cell. Biol., 197, 105–114, (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. A. Wells, M. F. Ware, F. D. Allen, and D. A. Lauffenburger, “Shaping up for shipping out: PLCgamma signaling of morphology changes in EGF-stimulated fibroblasts migration,” Cell. Motil. Cytoskeleton., 44, 227–233, (1999).

    Article  PubMed  CAS  Google Scholar 

  76. M. P. Wymann and L. Pirola, “Structure and function of phosphoinositide 3-kinases,” Biochim. Biophys. Acta, 1436, 127–150, (1998).

    Article  PubMed  CAS  Google Scholar 

  77. Y. Xiong, C. H. Huang, P. A. Iglesias, and P. N. Devreotes, “Cells navigate with a local-excitation, global-inhibition-biased excitable network,” Proc. Natl. Acad. Sci. USA. 107, 17,079–17,086, (2010).

    Article  Google Scholar 

  78. J. Xu, F. Wang, A. Van Keymeulen, et al., “Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils,” Cell, 114, 201–214, (2003).

    Article  PubMed  CAS  Google Scholar 

  79. M. B. Yaffe, “Phosphotyrosine-binding domains in signal transduction,” Nat. Rev. Mol. Cell. Biol., 3, 177–186, (2002).

    Article  PubMed  CAS  Google Scholar 

  80. M. Zhao, “Electrical fields in wound healing – An overriding signal that directs cell migration,” Semin. Cell. Dev. Biol., 20, 674–682 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Tyurin-Kuz’min.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova Vol. 99, No. 3, pp. 294–312, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyurin-Kuz’min, P.A., Vorotnikov, A.V. & Tkachuk, V.A. Molecular Mechanisms of the Selection of Movement Direction by Mesenchymal Cells. Neurosci Behav Physi 45, 104–115 (2015). https://doi.org/10.1007/s11055-014-0046-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-0046-8

Keywords

Navigation