Skip to main content
Log in

Regulation of Potential-Dependent Ca2+ Channels by Serotonin 5-HT1B Receptors in Different Populations of Hippocampal Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Metabotropic serotonin 5-HT1 receptors in cerebral neurons have a role in regulating such emotional states in humans as aggression, fear, and alcohol addiction. Activation of presynaptic 5-HT1B receptors leads to suppression of Ca2+ influx via potential-dependent calcium channels in certain neurons. Ca2+ influx into cells was measured in terms of the increase in the cytosolic calcium ion concentration in response to depolarization induced by addition of 35 mM KCl. An image analysis system showed that Ca2+ responses to depolarization of cultured hippocampal cells differed in terms of shape, rate, and amplitude in different neuron populations. 5-HT1B receptor agonists produced minor suppression of the activity of potential-dependent calcium channels in 86 ± 3% of neurons. Two minor cell populations (5–8% of cells each) were seen, which differed strongly in terms of the extent of desensitization of the Ca2+ signal. The calcium signal of one cell population responded to depolarization with a characteristic delay and a high rate of quenching. 5-HT1B receptor agonists produced powerful inhibition of the amplitude of the Ca2+ response to KCl only in this population. The calcium signal of the second population of cells was characterized by the absence of densensitization. 5-HT1B receptor agonists produced minor increases in the amplitude of the calcium response to depolarization in this population of neurons. Thus, these studies demonstrated differences in the serotonin 5-HT1B receptor sensitivities of potential-dependent calcium channels in different neuron populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Kononov, N. V. Bal’, and V. P. Zinchenko, “Variability in the calcium responses of hippocampal neurons to glutamate receptor agonists,” Biol. Membrany, 28, No. 2, 127–136 (2011).

    CAS  Google Scholar 

  2. A. V. Kononov, N. V. Bal’, and V. P. Zinchenko, “Regulation of spontaneous synchronous Ca2+ oscillations in hippocampal neurons by GABAergic neurons containing kainate receptors without desensitization,” Biol. Membrany, 29, No. 1–2, 133–138 (2012).

    CAS  Google Scholar 

  3. R. M. de Almeida and K. A. Miczek, “Aggression escalated by social instigation or by discontinuation of reinforcement (‘frustration’) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist,” Neuropsychopharmacology, 27, No. 2, 171–181 (2002).

    Article  PubMed  Google Scholar 

  4. U. Boschert, D. A. Amara, L. Segu, and R. Hen, “The mouse 5-hydroxytryptamine 1B receptor is localized predominantly on axon terminals,” Neuroscience, 58, 167–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. M. E. Castro, J. Pascual, T. Ramón, et al., “5-HT1B receptor binding in degenerative movement disorders,” Brain Res., 790, No. 1–2, 323–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. M. S. Clark, T. J. Sexton, M. McClain, et al., “Overexpression of 5-HT1B receptor in dorsal raphe nucleus using herpes simplex virus gene transfer increases anxiety behavior after inescapable stress,” J. Neurosci., 22, No. 11, 4550–4562 (2002).

    CAS  PubMed  Google Scholar 

  7. T. Collin, M. Chat, M. G. Lucas, et al., “Developmental changes in parvalbumin regulate presynaptic Ca2+ signalling,” J. Neurosci., 25, No. 1, 96–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. B. Grimaldi, M. P. Fillion, A. Bonnin, et al., “Immunocytochemical localization of neurons expression 5-HT-moduline in the mouse brain,” Neuropharmacology, 36, No. 8, 1079–1087 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. H. Hayashi and H. Miyata, “Fluorescence imaging of intracellular Ca2+,” J. Pharmacol. Toxicol. Meth., 31, No. 1, 1–10 (1994).

    Article  CAS  Google Scholar 

  10. D. Hoyer, J. P. Hannon, and G. R. Martin, “Molecular, pharmacological and functional diversity of 5-HT receptors,” Pharmacol. Biochem. Behav., 71, No. 4, 533–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. T. Klausberger, P. J. Magill, L. F. Marton, et al., “Brain-state- and cell-type specific firing of hippocampal interneurons in vivo,” Nature, 421, 844–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. T. Kosaka, H. Katsumaru, K. Hama, et al., “GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus,” Brain Res., 419, No. 1–2, 119–130 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. S. H. Lee and I. Soltesz, “Requirement for CB1 but not GABAB receptors in the cholecystokinin mediated inhibition of GABA release from cholecystokinin expressing basket cells,” J. Physiol., 589, No. 4, 891–902 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. H. Mizutani, T. Horri, and T. Takahashi, “5-HT1B receptor-mediated presynaptic inhibition at the calyx of Held of immature rats,” Eur. J. Neurosci., 24, No. 7, 1946–1954 (2006).

    Article  PubMed  Google Scholar 

  15. M. Muller, F. Felmy, B. Schwaller, and R. Schneggenburger, “Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of Held that accelerates the decay of Ca2+ and short-term facilitation,” J. Neurosci., 27, No. 9, 2261–2271 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. C. Nitsch, A. Scotti, A. Swommacal, and G. Kalt, “GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2+-binding protein parvalbumin,” Neurosci. Lett., 105, No. 3, 263–268 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. K. Nakamura, T. Kikusui, Y. Takeuchi, and Y. Mori, “Changes in social instigation- and food restriction-induced aggressive behaviors and hippocampal 5-HT1B mRNA receptor expression in male mice form early weaning,” Behav. Brain Res., 187, No. 2, 442–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. B. Oliviera and R. van Oorschota, “5-HT1B receptors and aggression,” Eur. J. Pharmacol., 526, No. 1–3, 207–217 (2005).

    Article  Google Scholar 

  19. N. L. Rochefort, H. Jia, and A. Konnerth, “Calcium imaging in the living brain: prospects for molecular medicine,” Trends Mol. Med., 14, No. 9, 389–399 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. F. Saudou, D. A. Amara, A. Dierich, et al., “Enhanced aggressive behavior in mice lacking 5-HT1B receptor,” Science, 265, 1875–1878 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. H. Schmidt, K. M. Stiefel, P. Racay, et al., “Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin-D28K,” J. Physiol., 551, 13–32 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. P. Somogyi, T. F. Freund, and A. Cowey, “The axo-axonic interneuron in the cerebral cortex of the rat, cat, and monkey,” Neuroscience, 7, 2577–2607 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. V. Volman, M. M. Behrens, and T. J. Sejnowski, “Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity,” J. Neurosci., 31, No. 49, 18,137–18,148 (2011).

    Article  CAS  Google Scholar 

  24. J. Winterer, A. V. Stempel, T. Dugladze, et al., “Cell-type-specific modulation of feedback inhibition by serotonin in the hippocampus,” J. Neurosci., 31, No. 23, 8464–8475 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. V. K. Yadav, J. H. Ryu, N. Suda, et al., “Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum,” Cell, 135, No. 5, 825–837 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zinchenko.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 99, No. 1, pp. 63–72, January, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononov, A.V., Ivanov, S.V. & Zinchenko, V.P. Regulation of Potential-Dependent Ca2+ Channels by Serotonin 5-HT1B Receptors in Different Populations of Hippocampal Neurons. Neurosci Behav Physi 44, 989–994 (2014). https://doi.org/10.1007/s11055-014-0014-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-0014-3

Keywords

Navigation