Skip to main content

Advertisement

Log in

A Framework for Data-Driven Mineral Prospectivity Mapping with Interpretable Machine Learning and Modulated Predictive Modeling

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Although mineral prospectivity modeling (MPM) has undergone decades of development, it has not yet been widely adopted in the global mineral exploration industry. Exploration geoscientists encounter challenges in understanding the internal working of many mineral prospectivity models due to their black box nature. Besides, their predictive results usually delineate undesirably large high-prospectivity areas, which are biased toward existing deposits, making MPM impractical. However, there are only a few data-driven methods for MPM that address both the interpretability of black box models and the issue of bias in high prospective areas, which may result from the intrinsic stochastic uncertainty of training samples, particularly toward well-known deposits. In this study, we construct and demonstrate a framework to improve the performance and reliability of data-driven MPM in the Qulong–Jiama mineral district of Tibet. Firstly, the mineral systems concept was applied to select appropriate targeting criteria and to derive corresponding evidential features. Secondly, model-agnostic methods, such as permutation feature importance, partial dependence plot, individual conditional expectation plot, and Shapely values, were applied to interpret the machine learning models. Finally, modulated prediction models and the spatial pattern of linked uncertainties were generated by an ensemble method that combines bootstrapping and the Random Forest algorithm. The final exploration targets, which were demarcated by cells with high modulated values and low uncertainties obtained by 50 predictive models, account for just ~ 3% of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Abedi, M., Norouzi, G.-H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences, 46, 272–283.

    Google Scholar 

  • Aitchison, J. (1982). The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139–160.

    Google Scholar 

  • Ball, G. H., & Hall, D. J. (1965). ISODATA, a novel method of data analysis and pattern classification. Stanford research inst Menlo Park CA.

  • Bergen, K. J., & de JohnsonBeroza., H. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433), eaau0323.

    Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS. Elsevier.

    Google Scholar 

  • Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Google Scholar 

  • Brown, W. M., Gedeon, T. D., Groves, D. I., & Barnes, R. G. (2000). Artificial neural networks: A new method for mineral prospectivity mapping. Australian Journal of Earth Sciences, 47(4), 757–770.

    Google Scholar 

  • Carranza, E. J. M. (2009a). Geochemical Anomaly and mineral prospectivity mapping in GIS (Vol. 11). Elsevier. https://doi.org/10.1016/S0168-6275(08)X0001-7

    Book  Google Scholar 

  • Carranza, E. J. M. (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35(10), 2032–2046.

    Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008a). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33(3–4), 536–558.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015a). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm. Ore Geology Reviews, 71, 777–787.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015b). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25(1), 35–50.

    Google Scholar 

  • Carranza, E. J. M., van Ruitenbeek, F. J. A., Hecker, C., van der Meijde, M., & van der Meer, F. D. (2008b). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374–387.

    Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research, 14(1), 47–63.

    Google Scholar 

  • Chen, Y., & An, A. (2016). Application of ant colony algorithm to geochemical anomaly detection. Journal of Geochemical Exploration, 164, 75–85.

    Google Scholar 

  • Chen, Y., & Wu, W. (2017). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.

    Google Scholar 

  • Cheng, Q. (2004). A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns. Mathematical Geology, 36(3), 345–360.

    Google Scholar 

  • Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113–126.

    Google Scholar 

  • Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., et al. (2003). Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11), 1021–1024.

    Google Scholar 

  • Coolbaugh, M. F., Raines, G. L., & Zehner, R. E. (2007). Assessment of exploration bias in data-driven predictive models and the estimation of undiscovered resources. Natural Resources Research, 16(2), 199–207.

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Daviran, M., Parsa, M., Maghsoudi, A., & Ghezelbash, R. (2022). Quantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mapping. Natural Resources Research, 31, 2271–2287.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the Jackknife. The Annals of Statistics, 7(1), 1–26.

    Google Scholar 

  • Egozcue, J. J., & Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37(7), 795–828.

    Google Scholar 

  • Ferrier, G., White, K., Griffiths, G., Bryant, R., & Stefouli, M. (2002). The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. International Journal of Remote Sensing, 23(2), 341–356.

    Google Scholar 

  • Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: learning a variable’s importance by studying an entire class of prediction models simultaneously. http://arxiv.org/abs/1801.01489

  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.

    Google Scholar 

  • Ge, Y., Zhang, Z., Cheng, Q., & Wu, G. (2022). Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia. China. Journal of Geochemical Exploration, 232, 106888.

    Google Scholar 

  • Granek, J. (2016). Application of machine learning algorithms to mineral prospectivity mapping. University of British Columbia.

    Google Scholar 

  • Guo, W., Zheng, W., Tang, J., Ying, L., Wang, Y., & Lin, B. (2014). Geochemical constraints on the source of metallogenic fluids and materials in the Jiama polymetallic Cu deposit, Tibet. Geology in China, 41(2), 510–528. in Chinese with English abstract.

    Google Scholar 

  • Hagemann, S. G., Lisitsin, V. A., & Huston, D. L. (2016). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76, 504–522.

    Google Scholar 

  • Hariharan, S., Tirodkar, S., Porwal, A., Bhattacharya, A., & Joly, A. (2017). Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: An example from the Tanami region. Western Australia. Natural Resources Research, 26(4), 489–507.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2013). The elements of statistical learning. Springer. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  • Hou, Z., Duan, L., Lu, Y., Zheng, Y., Zhu, D., Yang, Z., et al. (2015). Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6), 1541–1575.

    Google Scholar 

  • Hou, Z., Gao, Y., Qu, X., Rui, Z., & Mao, X. (2004). Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth and Planetary Science Letters, 220(1–2), 139–155.

    Google Scholar 

  • Hou, Z., Mo, X., Gao, Y., Qu, X., & Meng, X. (2003). Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibetan plateau and in northern Chile. Mineral Deposits, 22(1), 1–12. in Chinese with English abstract.

    Google Scholar 

  • Hou, Z., Yang, Z., Qu, X., Meng, X., Li, Z., Beaudoin, G., et al. (2009). The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1–3), 25–51.

    Google Scholar 

  • Hou, Z., Zheng, Y., Yang, Z., Rui, Z., Zhao, Z., Jiang, S., et al. (2013). Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita, 48(2), 173–192.

    Google Scholar 

  • Hou, Z., Zheng, Y., Yang, Z., & Yang, Z. (2012). Metallogenesis of continental collision setting: Part I. Gangdese Cenozoic porphyry Cu–Mo systems in Tibet. Mineral Deposits, 31(4), 647–670.

    Google Scholar 

  • Hronsky, J. M. A., & Kreuzer, O. P. (2019). Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geology Reviews, 107, 647–653.

    Google Scholar 

  • Jurado, K., Ludvigson, S. C., & Ng, S. (2015). Measuring uncertainty. American Economic Review, 105(3), 1177–1216.

    Google Scholar 

  • Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vector machines in R. Journal of Statistical Software, 15, 1–28.

    Google Scholar 

  • Kreuzer, O. P., Miller, A. V. M., Peters, K. J., Payne, C., Wildman, C., Partington, G. A., et al. (2015). Comparing prospectivity modelling results and past exploration data: A case study of porphyry Cu–Au mineral systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales. Ore Geology Reviews, 71, 516–544.

    Google Scholar 

  • Lang, X., Tang, J., Li, Z., Huang, Y., Ding, F., Yang, H., et al. (2014). U-Pb and Re–Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences, 79, 608–622.

    Google Scholar 

  • Lehmann, E. L., & Casella, G. (2006). Theory of point estimation. Springer Science & Business Media.

    Google Scholar 

  • Li, T., Zuo, R., Xiong, Y., & Peng, Y. (2021). Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Natural Resources Research, 30(1), 27–38.

    Google Scholar 

  • Li, Y., Selby, D., Feely, M., Costanzo, A., & Li, X.-H. (2017). Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit. Tibet. Mineralium Deposita, 52(2), 137–158.

    Google Scholar 

  • Liu, F. T., Ting, K. M., & Zhou, Z. (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data, 6(1), 1–39.

    Google Scholar 

  • Liu, Y., Zhou, K., & Xia, Q. (2018a). A MaxEnt model for mineral prospectivity mapping. Natural Resources Research, 27(3), 299–313.

    Google Scholar 

  • Liu, Y., Zhou, K., Zhang, N., & Wang, J. (2018b). Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar, China. Ore Geology Reviews, 100, 133–147.

    Google Scholar 

  • Lowell, J. D., & Guilbert, J. M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65(4), 373–408.

    Google Scholar 

  • Luo, Z., Zuo, R., Xiong, Y., & Zhou, B. (2023). Metallogenic-factor variational autoencoder for geochemical anomaly detection by ad-hoc and post-hoc interpretability algorithms. Natural Resources Research, 32, 835–853.

    Google Scholar 

  • Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology, 5(9), 1315–1316.

    Google Scholar 

  • McCuaig, T. C., & Hronsky, J. (2014). The mineral system concept: The key to exploration targeting. In Building exploration capability for the 21st century. Society of Economic Geologists. https://doi.org/10.5382/SP.18.08

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective exploration targeting system. Ore Geology Reviews, 38(3), 128–138.

    Google Scholar 

  • Molnar, C. (2021). Interpretable machine learning: a guide for making Black Box Models interpretable. Lulu.

    Google Scholar 

  • Mou, N., Wang, G., & Sun, X. (2023). Identification of geochemical anomalies related to mineralization: A case study from porphyry copper deposits in the Qulong-Jiama mining district of Tibet, China. Journal of Geochemical Exploration, 244, 107126.

    Google Scholar 

  • Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the central lapland greenstone belt. Northern Fennoscandian shield. Natural Resources Research, 17(1), 29–48.

    Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models: A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Google Scholar 

  • Pan, G. T. (2006). Spatial temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22, 521–533.

    Google Scholar 

  • Parsa, M., & Carranza, E. J. M. (2021). Modulating the impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivity. Natural Resources Research, 30(5), 3081–3097.

    Google Scholar 

  • Parsa, M., Carranza, E. J. M., & Ahmadi, B. (2022). Deep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral deposits. Natural Resources Research, 31(1), 37–50.

    Google Scholar 

  • Parsa, M., & Maghsoudi, A. (2021). Assessing the effects of mineral systems-derived exploration targeting criteria for random Forests-based predictive mapping of mineral prospectivity in Ahar-Arasbaran area. Iran. Ore Geology Reviews, 138, 104399.

    Google Scholar 

  • Parsa, M., & Pour, A. B. (2021). A simulation-based framework for modulating the effects of subjectivity in greenfield Mineral prospectivity mapping with geochemical and geological data. Journal of Geochemical Exploration, 229, 106838.

    Google Scholar 

  • Partington, G., & Sale, M. (2004). Prospectivity mapping using GIS with publicly available earth science data–a new targeting tool being successfully used for exploration in New Zealand. In Pacrim 2004 congress volume, adelaide (pp. 239–250).

  • Pearson, K. (1897). On a form of spurious correlation which may arise when indices are used in the measurement of organs. Royal Soc. London, Proc., 60, 489–502.

    Google Scholar 

  • Pirajno, F. (2012). Hydrothermal mineral deposits: principles and fundamental concepts for the exploration geologist. Springer Science & Business Media.

    Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2003). Artificial neural networks for mineral-potential Mapping: A case study from Aravalli Province, Western India. Natural Resources Research, 12, 155–171.

    Google Scholar 

  • Porwal, A., González-Álvarez, I., Markwitz, V., McCuaig, T. C., & Mamuse, A. (2010). Weights-of-evidence and logistic regression modeling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geology Reviews, 38(3), 184–196.

    Google Scholar 

  • Pour, A. B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9.

    Google Scholar 

  • Prado, E. M. G., de Souza Filho, C. R., Carranza, E. J. M., & Motta, J. G. (2020). Modeling of Cu–Au prospectivity in the Carajás mineral province (Brazil) through machine learning: Dealing with imbalanced training data. Ore Geology Reviews, 124, 103611.

    Google Scholar 

  • Qin, K., Xia, D., Li, G., Xiao, B., & Duo, J. (2014). Qulong porphyry-skarn type Cu-Mo deposit. Science Press.

    Google Scholar 

  • Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G.-R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.

    Google Scholar 

  • Reimann, C., Filzmoser, P., Hron, K., Kynčlová, P., & Garrett, R. G. (2017). A new method for correlation analysis of compositional (environmental) data – a worked example. Science of The Total Environment, 607–608, 965–971.

    Google Scholar 

  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Model-Agnostic Interpretability of Machine Learning. Retrieved 8 Nov 2022 from http://arxiv.org/abs/1606.05386

  • Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818.

    Google Scholar 

  • Shapley, L. S. (1953). 17. A value for n-person games. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the theory of games (AM-28) (Vol. 2, pp. 307–318). Princeton: Princeton University Press. https://doi.org/10.1515/9781400881970-018

    Chapter  Google Scholar 

  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41.

    Google Scholar 

  • Sun, F., Zhang, J., Wang, R., Zhou, L., Jeon, H., Li, Y., et al. (2022). Magmatic evolution and formation of the giant Jiama porphyry-skarn deposit in southern Tibet. Ore Geology Reviews, 145, 104889.

    Google Scholar 

  • Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, Y. (2019). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26–49.

    Google Scholar 

  • Sun, X., Leng, C., Hollings, P., Song, Q., Li, R., & Wan, X. (2021a). New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation. Mineralium Deposita, 56(5), 917–934.

    Google Scholar 

  • Sun, X., Lu, Y., Li, Q., & Li, R. (2021b). A downgoing Indian lithosphere control on along-strike variability of porphyry mineralization in the Gangdese belt of southern Tibet. Economic Geology, 116(1), 29–46.

    Google Scholar 

  • Tafti, R., Mortensen, J. K., Lang, J. R., Rebagliati, M., & Oliver, J. L. (2009). Jurassic U-Pb and Re-Os ages for the newly discovered Xietongmen Cu-Au porphyry district, Tibet, PRC: implications for metallogenic epochs in the southern Gangdese belt. Economic Geology, 104(1), 127–136.

    Google Scholar 

  • Tang, J., Yang, H., Song, Y., Wang, L., Liu, Z., Li, B., et al. (2021). The copper polymetallic deposits and resource potential in the Tibet Plateau. China Geology, 4(1), 1–16.

    Google Scholar 

  • Tang, X., Chen, Y., Wang, D., & Wang, C. (2009). Re-Os dating of molybdenite from the sharing porphyry molybdenum deposit in Gongbogyamda county, Tibet and its geological significance. Acta Geologica Sinica., 83(5), 698–704. in Chinese with English abstract.

    Google Scholar 

  • Templ, M., Hron, K., & Filzmoser, P. (2011). robCompositions: An R-package for robust statistical analysis of compositional Data. In V. Pawlowsky-Glahn & A. Buccianti (Eds.), Compositional data analysis (1st ed., pp. 341–355). Wiley. https://doi.org/10.1002/9781119976462.ch25

    Chapter  Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory. Springer. https://doi.org/10.1007/978-1-4757-2440-0

    Book  Google Scholar 

  • Wang, L., Tang, J., Cheng, W., Chen, W., Zhang, Z., Lin, X., et al. (2015). Origin of the ore-forming fluids and metals of the Bangpu porphyry Mo–Cu deposit of Tibet, China: Constraints from He–Ar, H–O, S and Pb isotopes. Journal of Asian Earth Sciences, 103, 276–287.

    Google Scholar 

  • Wang, Z., Yin, Z., Caers, J., & Zuo, R. (2020). A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. Geoscience Frontiers, 11(6), 2297–2308.

    Google Scholar 

  • Wyborn, L. A. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian Proterozoic mineral systems: essential ingredients and mappable criteria. In The AusIMM annual conference (Vol. 1994, pp. 109–115). The Australasian Institute of Mining and Metallurgy Carlton, Australia.

  • Xiong, Y., & Zuo, R. (2018). GIS-based rare events logistic regression for mineral prospectivity mapping. Computers & Geosciences, 111, 18–25.

    Google Scholar 

  • Yang, Z., Lu, Y., Hou, Z., & Chang, Z. (2015). High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of Adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2), 227–254.

    Google Scholar 

  • Ying, L., Wang, C., Tang, J., Wang, D., Qu, W., & Li, C. (2014). Re–Os systematics of sulfides (chalcopyrite, bornite, pyrite and pyrrhotite) from the Jiama Cu–Mo deposit of Tibet, China. Journal of Asian Earth Sciences, 79, 497–506.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral prospectivity mapping. Computers & Geosciences, 74, 97–109.

    Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Google Scholar 

  • Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. A., & Mihalasky, M. J. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.

    Google Scholar 

  • Yousefi, M., & Hronsky, J. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561.

    Google Scholar 

  • Zeng, Z., Liu, D., Wang, M., Zeren, Z., Nima, C. R., Zhang, R., Chen, N., & Zhu, W. (2016). Tectonic-magmatic evolution and mineralization of the Qulong-Jiama Areas in Eastern section of Gangdese Mountains, Xizang (Tibet). Geological Review, 62, 663–678. in Chinese with English abstract.

    Google Scholar 

  • Zhang, S., Carranza, E. J. M., Xiao, K., Chen, Z., Li, N., Wei, H., et al. (2021). Geochemically constrained prospectivity mapping aided by unsupervised cluster analysis. Natural Resources Research, 30(3), 1955–1975.

    Google Scholar 

  • Zhang, S., Xiao, K., Carranza, E. J. M., & Yang, F. (2019). Maximum entropy and random forest modeling of mineral potential: Analysis of gold prospectivity in the Hezuo-Meiwu district, West Qinling Orogen, China. Natural Resources Research, 28(3), 645–664.

    Google Scholar 

  • Zhang, Z., Wang, G., Carranza, E. J. M., Fan, J., Liu, X., Zhang, X., et al. (2022). An integrated framework for data-driven mineral prospectivity mapping using bagging-based positive-unlabeled learning and bayesian cost-sensitive logistic regression. Natural Resources Research, 31(6), 3041–3060.

    Google Scholar 

  • Zheng, W., Tang, J., Zhong, K., Ying, L., Leng, Q., Ding, S., & Lin, B. (2016). Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China. Ore Geology Reviews, 74, 151–169.

    Google Scholar 

  • Zhu, D., Zhao, Z., Niu, Y., Mo, X., Chung, S., Hou, Z., et al. (2011). The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1), 241–255.

    Google Scholar 

  • Zuo, R. (2018). Selection of an elemental association related to mineralization using spatial analysis. Journal of Geochemical Exploration, 184, 150–157.

    Google Scholar 

  • Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6), 3415–3424.

    Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975. https://doi.org/10.1016/j.cageo.2010.09.014

    Article  Google Scholar 

  • Zuo, R., & Wang, Z. (2020). Effects of random negative training samples on mineral prospectivity mapping. Natural Resources Research, 29(6), 3443–3455.

    Google Scholar 

  • Zuo, R., & Xu, Y. (2023). Graph deep learning model for mapping mineral prospectivity. Mathematical Geosciences, 55(1), 1–21.

    Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to the Associate Editor Prof. Renguang Zuo and two anonymous reviewers for their valuable comments. This research received support from the 2021 Graduate Innovation Fund Project of China University of Geosciences, Beijing (Grant No. ZD2021YC048), National Key Research and Development Program of China (Grant No. 2022YFC2903604), Technology Innovation Center for Exploration and Exploitation of Strategic Mineral Resources in Plateau Desert Region, Ministry Resources (Grant No. KFKT20230102), and the “Deep-time Digital Earth” Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing) (Fundamental Research Funds for the Central Universities; Grant No. 2652023001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongwen Wang.

Ethics declarations

Conflict of Interest

The authors declare that they do not possess any known conflicting financial interests or personal relationships that could affect the work reported in this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, N., Carranza, E.J.M., Wang, G. et al. A Framework for Data-Driven Mineral Prospectivity Mapping with Interpretable Machine Learning and Modulated Predictive Modeling. Nat Resour Res 32, 2439–2462 (2023). https://doi.org/10.1007/s11053-023-10272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10272-7

Keywords

Navigation