Skip to main content

Advertisement

Log in

3D Inversion of Gravity and Aeromagnetic Data over the Western North Singhbhum Mobile Belt, Eastern Indian Shield, for Delineating Prospective Sulfide (Au) Mineralization Zones

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The North Singhbhum Mobile Belt is an important metallogenic province in the Eastern Indian shield, and it hosts significant reserves of gold, uranium, and copper deposits. In this study, petrophysical, Bouguer anomaly, and aeromagnetic data were employed to delineate new prospective zones for sulfide (Au) mineralization. The bi-dimensional ensemble empirical mode decomposition (BEEMD) was applied to decompose gravity and aeromagnetic data into four intrinsic mode functions (BIMFG1 to BIMFG4 for gravity data; BIMFM1 to BIMFM4 for magnetic data). The BIMFG1 and BIMFM1 components only identified near-surface random noise or outcropping rocks, while the BIMFG4 and BIMFM4 represented signatures of deep-seated source bodies. In contrast, BIMFG2 to BIMFG3 and BIMFM2 to BIMFM3 components revealed higher-order shear zones (i.e., Babaikundi–Birgaon and Lungtu–Parasi lineaments) and show a high correlation with existing sulfide (Au) mineral deposits. Several discrete high gravity (up to 2 to 8 mGal) and high magnetic anomalies (up to 400 nT) were also noticed running parallel to the Babaikundi–Birgaon and Lungtu–Parasi lineaments. The 3D gravity and magnetic inversion results reveal moderate-low density/low-susceptibility and high-moderate density/low-susceptibility zones correlating with known sulfide (Au) mineralization locations. In addition, various new similar anomalous zones identified below the phyllite and quartz–mica schist of the Chandil Formation need to be explored for possible gold mineralization. Furthermore, its close association with Babaikundi–Birgaon and Lungtu–Parasi higher-order shear zones suggests that mineralization in this area might be structurally controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Anderson, N. L., Essa, K. S., & Elhussein, M. (2020). A comparison study using particle swarm optimization inversion algorithm for gravity anomaly interpretation due to a 2D vertical fault structure. Applied Geophysics, 179, 104120.

    Article  Google Scholar 

  • Ardestani, V. E., Fournier, D., & Oldenburg, D. W. (2021). Gravity and magnetic processing and inversion over the mahallat geothermal system using open source resources in python. Pure and Applied Geophysics, 178(6), 2171–2190.

    Article  Google Scholar 

  • Barla, A., Singh, S., & Chakravarti, R. (2020). Genesis of metasomatic gold mineralization in the Pahardiha–Rungikocha gold deposit, eastern India: Constraints from trace element signatures in chromite-cored magnetite and bulk rock geochemistry. Ore geology reviews, 121, 103482.

    Article  Google Scholar 

  • Bierlein, F. P., Groves, D. I., Goldfarb, R. J., & Dubé, B. (2006). Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Mineralium Deposita, 40(8), 874–886.

    Article  Google Scholar 

  • Blakely, R. J. (1995). Potential theory in applied geophysics (p. 441). Cambridge University Press.

    Google Scholar 

  • Chakravarti, R. (2020). Genesis of gold mineralization associated with Archean quartz-pebble-conglomerates (QPC) in and around the Eastern Iron Ore Group, Singhbhum Craton, Eastern India: Unpublished. PhD thesis. Indian Institute of Technology (Indian School of Mines), Dhanbad, India

  • Chatterjee, P., De, S., Ranaivoson, M., Mazumder, R., & Arima, M. (2013). A review of the∼ 1600 Ma sedimentation, volcanism, and tectono-thermal events in the Singhbhum craton Eastern India. Geoscience Frontiers, 4(3), 277–287.

    Article  Google Scholar 

  • Chatterjee, S., Basavaiah, N., Mondal, S., & Gain, D. (2021). Rock magnetic signatures of the dalma formation in the Singhbhum mobile belt, Eastern India. Journal of the Geological Society of India, 97(6), 635–642.

    Article  Google Scholar 

  • Chaudhuri, B. K., & Roy, R. K. (2001). Gold mineralization in Eastern India-Status review and a look to the future. Geological Survey of India Special Publication, 58, 29–57.

    Google Scholar 

  • Clark, D. A., & Emerson, D. W. (1991). Notes on rock magnetization characteristics in applied geophysical studies. Exploration Geophysics, 22(3), 547–555.

    Article  Google Scholar 

  • Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, 85, 142–154.

    Article  Google Scholar 

  • Colvine, A. C. (1989). An empirical model for the Formation of Archean gold deposits. Products of final cratonization of the Superior Province, Canada. In R. R. Keays, W. R. H. Ramsay, & D. I. Groves (Eds.), The geology of gold deposits: The perspective in 1988. Society of Economic Geologists.

    Google Scholar 

  • Cooper, G. R., & Cowan, D. R. (2008). Edge enhancement of potential-field data using normalized statistics. Geophysics, 73(3), H1–H4.

    Article  Google Scholar 

  • De, S., Mallik, L., Mazumder, R., Chatterjee, P., Ohta, T., Saito, S., & Chiarenzelli, J. (2016). Sedimentation history of the paleoproterozoic Singhbhum group of rocks, Eastern India and its implications. Earth-Science Reviews, 163, 141–161.

    Article  Google Scholar 

  • Dentith, M., Enkin, R. J., Morris, W., Adams, C., & Bourne, B. (2020). Petrophysics and mineral exploration: a workflow for data analysis and a new interpretation framework. Geophysical Prospecting, 68, 178–199.

    Article  Google Scholar 

  • Dentith, M., & Mudge, S. T. (2014). Geophysics for the mineral exploration geoscientist (p. 454). Cambridge University Press.

    Book  Google Scholar 

  • Dunn, J. A., & Dey, A. K. (1942). Geology and petrology of Eastern Singhbhum and surrounding areas. Memoirs of the Geological Survey of India, 69, 261–456.

    Google Scholar 

  • Eisenlohr, B. N., Groves, D., & Partington, G. A. (1989). Crustal-scale shear zones and their significance to Archaean gold mineralization in Western Australia. Mineralium Deposita, 24(1), 1–8.

    Article  Google Scholar 

  • Enkin, R. J., Hamilton, T. S., & Morris, W. A. (2020). The henkel petrophysical plot: Mineralogy and lithology from physical properties. Geochemistry, Geophysics, Geosystems, 21(1), e2019GC008818. https://doi.org/10.1029/2019GC008818

    Article  Google Scholar 

  • Forson, E. D., Menyeh, A., & Wemegah, D. D. (2021). Mapping lithological units, structural lineaments, and alteration zones in the Southern Kibi–Winneba belt of Ghana using integrated geophysical and remote sensing datasets. Ore Geology Reviews, 137, 104271.

    Article  Google Scholar 

  • Ge, T., Qiu, L., He, J., Fan, Z., Huang, X., & Xiong, S. (2020). Aeromagnetic identification and modeling of mafic-ultramafic complexes in the Huangshan–Turaergen Ni–Cu metallogenic belt in NW China: Magmatic and metallogenic implications. Ore Geology Reviews, 127, 103849.

    Article  Google Scholar 

  • Gobashy, M. M., Eldougdoug, A., Abdelazeem, M., & Abdelhalim, A. (2021). Future development of gold mineralization utilizing integrated geology and aeromagnetic techniques: A case study in the Barramiya Mining District, Central Eastern Desert of Egypt. Natural Resources Research, 30(3), 2007–2028.

    Article  Google Scholar 

  • Groves, D. I., Phillips, G. N., Ho, S. E., Houstoun, S. M., & Standing, C. A. (1987). Craton-scale distribution of Archean greenstone gold deposits; predictive capacity of the metamorphic model. Economic Geology, 82(8), 2045–2058.

    Article  Google Scholar 

  • Groves, D. I., Santosh, M., & Zhang, L. (2020). A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach. Geoscience Frontiers, 11(3), 719–738.

    Article  Google Scholar 

  • Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM review, 34(4), 561–580.

    Article  Google Scholar 

  • Henkel, H. (1991). Petrophysical properties (density and magnetization) of rocks from the northern part of the Baltic Shield. Tectonophysics, 192(1–2), 1–19.

    Article  Google Scholar 

  • Horo, D., Pal, S. K., Singh, S., & Srivastava, S. (2020). Combined self-potential, electrical resistivity tomography and induced polarisation for mapping of gold prospective zones over a part of Babaikundi–Birgaon Axis, North Singhbhum Mobile Belt India. Exploration Geophysics, 51(5), 507–522.

    Article  Google Scholar 

  • Hronsky, J. M., & Groves, D. I. (2008). Science of targeting: definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55(1), 3–12.

    Article  Google Scholar 

  • Jha, V. (2015). Metallotectonic evolution of gold mineralization in and around Babaikundi area within the North Singhbhum Crustal Province, Eastern India. Unpublished Ph.D. thesis. Indian Institute of Technology (Indian School of Mines), Dhanbad, pp. 208

  • Jha, V., Singh, S., & Venkatesh, A. S. (2015). Invisible gold occurrence within the quartz reef pyrite of Babaikundi area, North Singhbhum fold-and-thrust belt, Eastern Indian Shield: Evidence from petrographic, SEM and EPMA studies. Ore Geology Reviews, 65, 426–432.

    Article  Google Scholar 

  • Katti, V. J., Sen, J., & Bhatt, A. K. (2010). Uranium potentiality of South Purulia shear zone in Eastern Indian Shield. Technical meeting on low grade Uranium ore (pp. 29–31). IAEA.

    Google Scholar 

  • Liu, Y., Xia, Q., & Cheng, Q. (2021). Aeromagnetic and geochemical signatures in the Chinese Western Tianshan: Implications for tectonic setting and mineral exploration. Natural Resources Research, 30(5), 3165–3195.

    Article  Google Scholar 

  • Madhusudan, I. C., Maiti, S. K., De, M. K., Singh, A., & Das, P. C. (1999). Geophysical studies of Tamar Gold Prospect, Babaikundi–Birgaon Sector, District Ranchi, Bihar. Ind Miner, 53, 37–44.

    Google Scholar 

  • Majumdar, S., Singh, S., Sahoo, P. R., & Venkatesh, A. S. (2019). Trace-element systematics of pyrite and its implications for refractory gold mineralisation within the carbonaceous metasedimentary units of Palaeoproterozoic South Purulia shear zone, eastern India. Journal of Earth System Science, 128(8), 1–25.

    Article  Google Scholar 

  • Mandal, A., & Niyogi, S. (2018). Filter assisted bi-dimensional empirical mode decomposition: A hybrid approach for regional-residual separation of gravity anomaly. Journal of Applied Geophysics, 159, 218–227.

    Article  Google Scholar 

  • Mazumder, R. (2005). Proterozoic sedimentation and volcanism in the Singhbhum crustal province, India and their implications. Sedimentary Geology, 176(1–2), 167–193.

    Article  Google Scholar 

  • Mazumder, R., De, S., Ohta, T., Flannery, D., Mallik, L., Chaudhury, T., Chatterjee, P., & Arima, M. (2015). Palaeo-Mesoproterozoic sedimentation and tectonics of the Singhbhum Craton, Eastern India, and implications for global and craton-specific geological events. Geological Society, London, Memoirs, 43(1), 139–149.

    Article  Google Scholar 

  • McCuaig, T. C., & Hronsky, J. M. (2014). The mineral system concept: The key to exploration targeting. Society of Economic Geologists Special Pubications, 18, 153–175.

    Google Scholar 

  • Miller, C. A., Williams-Jones, G., Fournier, D., & Witter, J. (2017). 3D gravity Inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile. Earth and Planetary Science Letters, 459, 14–27.

    Article  Google Scholar 

  • Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507–517.

    Article  Google Scholar 

  • Nabighian, M. N. (1984). Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 49(6), 780–786.

    Article  Google Scholar 

  • Olierook, H. K., Clark, C., Reddy, S. M., Mazumder, R., Jourdan, F., & Evans, N. J. (2019). Evolution of the Singhbhum Craton and supracrustal provinces from age, isotopic and chemical constraints. Earth-Science Reviews, 193, 237–259.

    Article  Google Scholar 

  • Roach, M. J., Leaman, D. E., & Richardson, R. G. (1993). A comparison of regional-residual separation techniques for gravity surveys. Exploration Geophysics, 24(3–4), 779–784.

    Article  Google Scholar 

  • Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3D analytic signal. Geophysics, 57(1), 116–125.

    Article  Google Scholar 

  • Sai, V. S., Chaudhuri, B. K., & Ghosh, R. N. (2004). Gold mineralisation around Babaikundi area in Singhbhum group of rocks, Ranchi District Jharkhand. Journal Geological Society of India, 64(2), 133–138.

    Google Scholar 

  • Sarkar, S. N., & Saha, A. K. (1977). The present status of the Precambrian stratigraphy, tectonics and geochronology of the Singhbhum-Keonjhar-Mayurbhanj region, Eastern India. Indian Journal of Earth Sciences, 1977, 37–66.

    Google Scholar 

  • Sesha Sai, V. V. (1998). A report on exploration for gold in Babaikundi–Birgaon sector, district Ranchi Bihar. Ranchi: Geological Survey of India.

    Google Scholar 

  • Sesha Sai, V. V., Chaudhuri, B. K., & Ghosh, R. N. (2004). Gold Mineralisation around Babaikundi area in Singhbhum group of rocks, Ranchi District Jharkhand. Geological Society of India, 64(2), 133–138.

    Google Scholar 

  • Shang, Z., Chen, Y., Xu, X., & Zhao, B. (2021). Extraction of gravity–magnetic anomalies associated with Pb–Zn–Fe polymetallic mineralization in Luziyuan ore field, Yunnan Province, Southwestern China. Natural Resources Research, 31, 1–17. https://doi.org/10.1007/s11053-021-09924-3

    Article  Google Scholar 

  • Sharan, R. R., & Kurien, P. S. (2004). Final report on investigation for gold in parts of Sonapet valley, Paschimi Singhbhum and Ranchi districts, Jharkhand (p. 456). Ranchi: Geological Survey India.

    Google Scholar 

  • Singh, S., Chakravarti, R., Barla, A., Behera, R. C., & Neogi, S. (2021). A holistic approach on the gold metallogeny of the Singhbhum crustal province: Implications from tectono-metamorphic events during the Archean-Proterozoic regime. Precambrian Research, 365, 106376.

    Article  Google Scholar 

  • Tao, G., Wang, G., & Zhang, Z. (2019). Extraction of mineralization-related anomalies from gravity and magnetic potential fields for mineral exploration targeting: Tongling Cu (–Au) District China. Natural Resources Research, 28(2), 461–486.

    Article  Google Scholar 

  • Toft, P. B., Arkani-Hamed, J., & Haggerty, S. E. (1990). The effects of serpentinization on density and magnetic susceptibility: a petrophysical model. Physics of the Earth and Planetary Interiors, 65(1–2), 137–157.

    Article  Google Scholar 

  • Vasconcelos, M., da Purificação, R. S., Conceição, D., & Sena, F. (2018). Gravity signature and physical properties of copper deposit in the Curaçá Valley, Northern Bahia/Brazil–case study. Geophysical Prospecting, 66(9), 1784–1795.

    Article  Google Scholar 

  • Wu, Z., Huang, N. E., & Chen, X. (2009). The multi-dimensional ensemble empirical mode decomposition method. Advances in Adaptive Data Analysis, 1(03), 339–372.

    Article  Google Scholar 

  • Wyman, D. A., Cassidy, K. F., & Hollings, P. (2016). Orogenic gold and the mineral systems approach: Resolving fact, fiction and fantasy. Ore Geology Reviews, 78, 322–335.

    Article  Google Scholar 

  • Xiao, F., & Wang, Z. (2017). Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: Implications for porphyry Cu–Mo polymetallic deposits exploration. Ore Geology Reviews, 80, 1042–1055.

    Article  Google Scholar 

Download references

Acknowledgments

Santosh Kumar and Arasada gratefully acknowledge DST-SERB and DST-INSPIRE for the research fellowship to carry out this work. GSR gratefully acknowledges the Department of Science & Technology and Science & Engineering Research Board, Govt. of India (ECR/2016/001860 & DST/INSPIRE/04/2015/003215), for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Srinivasa Rao.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Arasada, R.C., Rao, G.S. et al. 3D Inversion of Gravity and Aeromagnetic Data over the Western North Singhbhum Mobile Belt, Eastern Indian Shield, for Delineating Prospective Sulfide (Au) Mineralization Zones. Nat Resour Res 32, 1917–1940 (2023). https://doi.org/10.1007/s11053-023-10241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10241-0

Keywords

Navigation