Skip to main content
Log in

Quantitative Mineralogy in Characterization of Historical Tailings: A Case from the Abandoned Balya Pb–Zn Mine, Western Turkey

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This study investigated the abandoned Balya Pb–Zn mine tailing in Turkey. We performed sieve analyses, X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), major and trace element analyses, and SEM-based quantitative mineralogical analyses on collected samples. A schematic oxidation model comprising at least three stages is proposed based on the mineral paragenesis, textural properties of minerals, and elemental deportments. Oxidation caused the development of vertical zones such as vadose (oxidation) and capillary zones with physical, mineralogical, and chemical differences. For example, the near-surface vadose zone of sulfide oxidation contained intensely oxidized pyrite (18 wt.%) and 16 wt.% secondary minerals (As-bearing plumbojarosite, jarosite and gypsum). In contrast, the capillary zone representing a depth of 20–60 cm contained unaltered 13 wt.% pyrites, primary sulfides (e.g., sphalerite, galena, and arsenopyrite), and 23 wt.% secondary Mn–Fe–Zn-bearing oxy-hydroxides. The distribution of secondary minerals also reflected the elemental mobility depending on pH. Precipitation of plumbojarosite under acidic conditions limited the mobility of Pb and As, thereby keeping them in the vadose zone. Mn, Fe, and Zn seeped deep, and their mobility was limited by forming oxy-hydroxides at moderately acidic to circumneutral pH conditions in the capillary zone. The precipitation of the secondary minerals changed the textural properties of primary sulfides such as pyrite and galena restricted their reactivity, and caused a change in the rate and degree of oxidation over time. This case study showed that mineralogical constituents, key factors in the characterization of mine tailings, may change due to the secondary minerals, as in historical tailings with a long exposure time. Therefore, it should be noted that assessments based on the existing mineralogical properties of unoxidized tailing samples may cause uncertainties in determining the long-term behavior of the tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Agdemir, N., Kirikoglu, M. S., Lehmann, B., & Tietze, J. (1994). Petrology and alteration geochemistry of the epithermal Balya Pb-Zn-Ag deposit, NW Turkey. Mineral Deposita, 29, 366–371.

    Article  Google Scholar 

  • Akyol, Z. (1977a). Geology of Balya mine region (in Turkish). Journal of Geological Engineering, 1(3), 19–27. Retrieved March 2, 2021, from https://www.jmo.org.tr/resimler/ekler/9a4ab452be9aa65_ek.pdf

  • Akyol, Z. (1977b). The importance of Balıkesir Balya mine wastes in terms of national economy (in Turkish). Journal of Geological Engineering, 1(2), 13–16.

    Google Scholar 

  • Akyol, Z. (1978). Balya mine and waste problems (in Turkish). Earth and Human Journal, 68–69. Retrieved March 2, 2021, from https://eski.jmo.org.tr/resimler/ekler/3bd92718fa55d5f_ek.pdf?dergi=YERYUVARI%20VE%20%DDNSAN

  • Aykol, A., Budakoğlu, M., Kumral, M., Gültekin, A. H., Turhan, M., Esenli, V., Yavuz, F., & Orgun, Y. (2003). Heavy metal pollution and acid drainage from the abandoned Balya Pb-Zn sulfide mine, NW Anatolia, Turkey. Environmental Geology, 45, 198–208.

    Article  Google Scholar 

  • Amar, H., Benzaazoua, M., Edahbi, M., Villeneuve, M., Joly, M. A., & Elghali, A. (2021b). Reprocessing feasibility of polymetallic waste rock cleaner and sustainable mining. Journal of Geochemical Exploration, 220, 106683.

    Article  Google Scholar 

  • Amar, H., Elghali, A., & Benzaazoua, M. (2021a). Geochemical behavior of benign desulphurised waste rocks for mine drainage control and sustainable management. Journal of Geochemical Exploration, 225, 106767.

    Article  Google Scholar 

  • Balcı, N. Ç., Gül, S., Kılıç, M. M., Karagüler, N. G., Sarı, E., & Sönmez, M. Ş. (2014). Biogeochemistry of Balıkesir Balya Pb-Zn mine tailings site and its effect on generation of acid mine drainage (in Turkish). Geological Bulletin of Turkey, 57(3), 1–24.

    Google Scholar 

  • Bao, Z., Al, T., Couillard, M., Poirier, G., Bain, J., Shrimpton, H. K., Finfrock, Y. Z., Lanzirotti, A., Paktunc, D., Saurette, E., Hu, Y., Ptacek, C. J., & Blowes, D. W. (2021). A cross scale investigation of galena oxidation and controls on mobilization of lead in mine waste rock. Journal of Hazardous Materials, 412, 125130.

    Article  Google Scholar 

  • Bernier, L., & Warren, L. A. (2007). Geochemical diversity in S processes mediated by culture-adapted and environmental-enrichments of Acidithiobacillus Spp. Geochimica Et Cosmochimica Acta, 71(23), 5684–5697.

    Article  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Jambor, J. L., & Weisener, C. G. (2003). Treatise on geochemistry: The geochemistry of acid mine drainage. Elsevier. https://doi.org/10.1016/B0-08-043751-6/09137-4

    Book  Google Scholar 

  • Brough, C., Strongman, J., Bowell, R., Warrender, R., Presta, A., Barnes, A., & Fletcher, J. (2017). Automated environmental mineralogy: The use of liberation analysis in humidity cell test work. Minerals Engineering, 107, 112–122.

    Article  Google Scholar 

  • Carrillo, J. A., Velazquez, A., Gutierrez, E. J., & Reyes-Dominguez, I. A. (2022). Partitioning and mobility of arsenic (As) and lead (Pb) in an ancient Pb-Zn mine in central Mexico: Role of amorphous ferric arsenate. Applied Geochemistry, 136, 105172.

    Article  Google Scholar 

  • Davis, A., Drexler, J. W., Ruby, M. V., & Nicholson, A. (1993). Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana. Environmental Science and Technology, 27, 1415–1425.

    Article  Google Scholar 

  • Del Rio-Salas, R., Ayala-Ramirez, Y., Loredo-Portales, R., Romero, F., Molina-Freaner, F., Minjarez-Osorio, C., Pi-Puig, T., Ochoa-Landin, L., & Moreno-Rodriguez, V. (2019). Mineralogy and geochemistry of rural road dust and nearby mine tailings: A case of ignored pollution hazard from an abandoned mining site in semi-arid zone. Natural Resources Research, 28(4), 1485–1503.

    Article  Google Scholar 

  • Dold, B. (2014). Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals, 4, 621–641.

    Article  Google Scholar 

  • Dold, B. (2017). Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120–132.

    Article  Google Scholar 

  • Drahota, P., Knappova, M., Kindlova, H., Culka, A., Majzlan, J., Mihaljevic, M., Rohovec, J., Veselovsky, F., Fridrichova, M., & Jehlicka, J. (2016). Mobility and attenuation of arsenic sulfide-rich mining waste from the Czech Republic. Science of the Total Environment, 557–558, 192–203.

    Article  Google Scholar 

  • Edwards, K. J., Bond, P. L., Druschel, G. K., Mcguire, M. M., Hamers, R. J., & Banfield, J. F. (2000). Geochemical and biological aspects of sulfide mineral dissolution: Lessons from Iron Mountain, California. Chemical Geology, 169, 383–397.

    Article  Google Scholar 

  • Edwards, K. J., Hu, Bo., Hamers, R. J., & Banfield, J. F. (2001). A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiology Ecology, 34, 197–206.

    Article  Google Scholar 

  • Elghali, A., Benzaazoua, M., Bouzahzah, H., Abdelmoula, M., Dynes, J. J., & Jamieson, H. E. (2021). Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement. Science of the Total Environment, 784, 147105.

    Article  Google Scholar 

  • Elghali, A., Benzaazoua, M., Bouzahzah, H., Bussière, B., & Villarraga-Gomez, H. (2018). Determination of the available acid-generating potential of waste rock, part I: Mineralogical approach. Applied Geochemistry, 99, 31–41.

    Article  Google Scholar 

  • Elghali, A., Benzaazoua, M., Bussière, B., & Bouzahzah, H. (2019b). Determination of the available acid-generating potential of waste rock, part II: Waste management involvement. Applied Geochemistry, 100, 316–325.

    Article  Google Scholar 

  • Elghali, A., Benzaazoua, M., Bussière, B., Kennedy, C., Parwani, R., & Graham, S. (2019a). The role of hardpan formation on the reactivity of sulfidic mine tailings: A case study at Joutel mine (Québec). Science of The Total Environment, 654, 118–128.

    Article  Google Scholar 

  • Evangelou, V. P., & Zhang, Y. L. (1995). A review: Pyrite oxidation mechanisms and acid mine drainage prevention. Critical Reviews in Environmental Science and Technology, 25(2), 141–199.

    Article  Google Scholar 

  • Fan, R., Qian, G., Li, Y., Short, M. D., Schumann, R. C., Chen, M., Smart, R. C., & Gerson, A. R. (2022). Evolution of pyrite oxidation from a 10-year kinetic leach study: Implications for secondary mineralization in acid mine drainage control. Chemical Geology, 588, 120653.

    Article  Google Scholar 

  • Filippi, M., Drahota, P., Machovic, V., Böhmova, V., & Mihaljevic, M. (2015). Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump. Science of the Total Environment, 536, 713–728.

    Article  Google Scholar 

  • Frau, F., Ardau, C., & Fanfani, L. (2009). Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (South-East Sardinia, Italy). Journal of Geochemical Exploration, 100, 105–115.

    Article  Google Scholar 

  • Goumih, A., El Adnani, M., Hakkou, R., Benzaazoua, M., Ouhamdouch, S., & Boumehdi, M. A. (2022). Evaluation of the long-term contaminated neutral drainage CND generation potential of waste rock piles at the abandoned Zn-Pb Erdouz Mine (Occidental High Atlas, Morocco). Mining, Metallurgy & Exploration, 39, 643–654.

    Article  Google Scholar 

  • Gu, Y. (2003). Automated scanning electron microscope based mineral liberation analysis. Journal of Minerals & Materials Characterization & Engineering, 2(1), 33–41.

    Article  Google Scholar 

  • Guanira, K., Valente, T. M., Rios, C. A., Castellanos, O. M., Salazar, L., Lattanzi, D., & Jaime, P. (2020). Methodological approach for mineralogical characterization of tailings from a Cu(Au, Ag) skarn type deposit using QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy). Journal of Geochemical Exploration, 209, 106439.

    Article  Google Scholar 

  • Gül, S. (2014). Biogeochemistry of Balıkesir–Balya Pb-Zn mine wastes and investigation of their effects on the generation of acid mine drainage (in Turkish). Master Thesis. Istanbul Technical University, Graduate School of Science and Engineering, Istanbul.

  • Guseva, O., Opitz, A. K. B., Broadhurst, J. L., Harrison, S. T. L., & Becker, M. (2021). Characterization and prediction of acid rock drainage potential in waste rock: Value of integrating quantitative mineralogical and textural measurements. Minerals Engineering, 163, 106750.

    Article  Google Scholar 

  • Hammarstrom, J. M., Seal, R. R., Meier, A. L., & Kornfeld, J. M. (2005). Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chemical Geology, 215, 407–431.

    Article  Google Scholar 

  • Helser, J., & Cappuyns, V. (2021). Trace elements leaching from Pb-Zn mine waste (Plombieres, Belgium) and environmental implications. Journal of Geochemical Exploration, 220, 106659.

    Article  Google Scholar 

  • Jamieson, H. E. (2011). Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements, 7, 381–386.

    Article  Google Scholar 

  • Jamieson, H. E., Walker, S. R., & Parsons, M. B. (2015). Mineralogical characterization of mine waste. Applied Geochemistry, 57, 85–105.

    Article  Google Scholar 

  • Kalyoncu-Ergüler, G., & Ergüler, Z. A. (2020). The evaluation of acid mine drainage by kinetic procedures and empirical models for field scale behaviour. Arabian Journal of Geosciences., 13, 387.

    Article  Google Scholar 

  • Karlsson, T., Raisanen, M. L., Lehtonen, M., & Alakangas, L. (2018). Comparison of static and mineralogical ARD prediction methods in the Nordic Environment. Environmental Monitoring and Assessment, 190(719), 1–29.

    Google Scholar 

  • Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014). Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 51, 229–245.

    Article  Google Scholar 

  • Lapakko, K. A. (2002). Metal mine rock and waste characterization tools: an overview. International Institute for Environment and Development, (67). Retrieved March 2, 2021, from https://pubs.iied.org/pdfs/G00559.pdf?origin=publication_detail

  • Lapakko, K. A. (2015). Preoperational assessment of solute release from waste rock at proposed mining operations. Applied Geochemistry, 57, 106–124.

    Article  Google Scholar 

  • Li, J., Lu, J., Lu, X., Tu, B., Ouyang, B., Han, X., & Wang, R. (2016). Sulfur transformation in microbially mediated pyrite oxidation by Acidithiobacillus Ferrooxidans: Insights from x-ray photoelectron spectroscopy-based quantitative depth profiling. Geomicrobiology Journal, 33, 118–134.

    Article  Google Scholar 

  • Lindsay, M. B. J., Moncur, M. C., Bain, J. G., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. (2015). Geochemical and mineralogical aspects of sulfide mine tailings. Applied Geochemistry, 57, 157–177.

    Article  Google Scholar 

  • Liu, H., Lu, X., Zhang, L., Xiang, W., Zhu, X., Li, J., Wang, X., Lu, J., & Wang, R. (2018). Collaborative effects of Acidithiobacillus Ferrooxidans and ferrous ions on the oxidation of chalcopyrite. Chemical Geology, 493, 109–120.

    Article  Google Scholar 

  • Lotter, N. O., Baum, W., Reeves, S., Arrue, C., & Bradshaw, D. J. (2018). The business value of best practice process mineralogy. Minerals Engineering, 116, 226–238.

    Article  Google Scholar 

  • Lottermoser, B. G. (2010). Mine wastes characterization, treatment and environmental impacts (3rd ed.). Berlin and Heidelberg: Springer. https://doi.org/10.1007/978-3-642-12419-8

    Book  Google Scholar 

  • Mafra, C., Bouzahzah, H., Stamenov, L., & Gaydardzhiev, S. (2020). Insights on the effect of pyrite liberation degree upon the acid mine drainage potential of sulfide flotation tailings. Applied Geochemistry, 123, 104774.

    Article  Google Scholar 

  • Matsumoto, S., Shimada, H., & Sasaoka, T. (2016). The key factor of acid mine drainage (AMD) in the history of the contribution of mining industry to the prosperity of the United States and South Africa: A review. Natural Resources, 7, 445–460.

    Article  Google Scholar 

  • Mertz, S., Forestier, L. L., Bataillard, P., & Devau, N. (2021). Leaching of trace metals (Pb) from contaminated tailings amended with iron oxides and manure: New insight from a modelling approach. Chemical Geology, 579, 120356.

    Article  Google Scholar 

  • Michaud, M. L., Plante, B., Bussiere, B., Benzaazoua, M., & Leroux, J. (2017). Development of a modified kinetic test using EDTA and citric acid for the prediction of contaminated neutral drainage. Journal of Geochemical Exploration., 181, 58–68.

    Article  Google Scholar 

  • Moreno-Gonzalez, R., Macias, F., Olias, M., & Canovas, C. R. (2022). Temporal evolution of acid mine drainage (AMD) leachates from the abandoned Tharsis mine (Iberian Pyrite Belt, Spain). Environmental Pollution, 295, 118697.

    Article  Google Scholar 

  • Mulenshi, J., Gilbricht, S., Chelgani, S. C., & Rosenkranz, J. (2021). Systematic characterization of historical tailings for possible remediation and recovery of critical metals and minerals – The Yxsjöberg case. Journal of Geochemical Exploration, 226, 106777.

    Article  Google Scholar 

  • Nomade, A. C., Waltzing, T., Evrard, C., Soubrand, M., Lenain, J. F., Ducloux, E., Ghorbel, S., Grosbois, C., & Bril, H. (2016). Arsenic and lead mobility: From tailing materials to the aqueous compartment. Applied Geochemistry, 64, 10–21.

    Article  Google Scholar 

  • Nordstrom, D. K., & Alpers, C. N. (1997). Geochemistry of acid mine waters. Environmental Geochemistry of Mineral Deposits, 6A, 133–160.

    Google Scholar 

  • Öngür, T. (2003). Balya zinc-lead mine, environmental issues and social re-development (in Turkish). Chamber of Geological Engineers publication, 51. Retrieved March 2, 2021, from https://www.jmo.org.tr/kutuphane/yayin_goster.php?yayinkod=14592

  • Paktunç, A. D. (1999). Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environmental Geology, 39(2), 103–112.

    Article  Google Scholar 

  • Parbhakar-Fox, A., & Lottermoser, B. G. (2015). A critical review of acid rock drainage prediction methods and practices. Minerals Engineering, 82, 107–124.

    Article  Google Scholar 

  • Park, I., Tabelin, C. B., Jeon, S., Li, X., Seno, K., Ito, M., & Hiroyoshi, N. (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588–606.

    Article  Google Scholar 

  • Plante, B., Bussiere, B., & Benzaazoua, M. (2014). Lab to field scale effects on contaminated neutral drainage prediction from the Tio Mine waste rocks. Journal of Geochemical Exploration., 137, 37–47.

    Article  Google Scholar 

  • Redwan, M., Rammlmair, D., & Meima, J. A. (2012). Application of mineral liberation analysis in studying micro-sedimentological structures within sulfide mine tailings and their effect on hardpan formation. Science of The Total Environment, 414, 480–493.

    Article  Google Scholar 

  • Romero, F. M., Armienta, M. A., & Hernandez, G. G. (2007). Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Applied Geochemistry, 22, 109–127.

    Article  Google Scholar 

  • Roussel, C., Neel, C., & Bril, H. (2000). Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Science of the Total Environment, 263, 209–219.

    Article  Google Scholar 

  • Sangita, G., Udayabhanu, G. & Prasad, B. (2010). Studies on environmental impact of acid mine drainage generation and its treatment: an appraisal. Indian Journal of Environmental Protection, 30/11, 953–967. Retrieved February 10, 2021, from https://ijep.co.in/archives

  • Schulz, B., Sandmann, D., & Gilbricht, S. (2020). SEM-based automated mineralogy and it’s application in geo- and material sciences. Minerals, 10, 1004.

    Article  Google Scholar 

  • Sidenko, N. V., Lazareva, E. V., Bortnikova, S. B., & Kireev, A. D. (2005). Geochemical and mineralogical zoning of high-sulfide mine-waste at the Berikul Mine-Site, Kemerovo Region, Russia. Canadian Mineralogist, 43, 1141–1156.

    Article  Google Scholar 

  • Sohrabian, B., Gharehgheshlagh, H. H., Soltani-Mohammadi, S., & Sharif, J. A. (2020). Evaluation of tailings from a porphyry copper mine based on joint simulation of contaminants. Natural Resources Research, 29(2), 983–1005.

    Article  Google Scholar 

  • Szczepafiska, J. & Twardowska, I. (2004). In I. Twardowska (Eds.), Mining waste. Waste Management Series (Vol. 4, pp 319–385). Elsevier. https://doi.org/10.1016/S0713-2743(04)80015-1

  • Tabelin, C. B., Corpuz, R. D., Igarashi, T., Tabelin, M. V., Alorro, R. D., Yoo, K., Raval, S., Ito, M., & Hiroyoshi, N. (2020). Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite. Journal of Hazardous Materials, 399, 122844.

    Article  Google Scholar 

  • Taberima, S., Junaedi, E., Sarwom, R., Lindongi, L. E., & Mulyanto, B. (2020). The acid mine drainage (AMD) impact of tailings and non-tailings on the ecosystem changes in the ModADA sedimentation area, Timika. Journal of Degraded and Mining Lands Management, 7(2), 2085–2094.

    Article  Google Scholar 

  • Tame, C., Hudson-Edwards, K. A., & Potter, H. A. B. (2017). Weathering of Zinc-(Zn)-bearing mine waste in a neutral mine drainage setting, Gunnerside Gill, Yorkshire. Procedia Earth and Planetary Science., 17, 284–287.

    Article  Google Scholar 

  • Tuhy, M., Hrstka, T., & Ettler, V. (2020). Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils. Environmental Pollution, 266, 115118.

    Article  Google Scholar 

  • Vardar, N. (2011). Investigation of biogeochemical and microbiological characteristics of acid mine drainage in Balıkesir -Balya region by molecular biology techniques. Master Thesis. Istanbul Technical University, Graduate School of Science and Engineering, Istanbul.

  • Zhao, F., Gu, S., Hao, L., Cheng, H., & Liu, L. (2021). Secondary sulfate minerals from pyrite oxidation in Lanmuchang Hg-Tl deposit, Southwest Guizhou Province, China: Geochemistry and environmental significance. Bulletin of Environmental Contamination and Toxicology, 107, 1004–1011.

    Article  Google Scholar 

Download references

Acknowledgments

This study is a part of PhD thesis of the first author. The authors thank Assoc. Prof. Evren Çubukçu (Hacettepe University), Assoc. Prof. Emine Sütçü (MTA) for their contributions and English improvements and also MTA staffs who contribute to the use of laboratory facilities. Manuscript has largely improved by the constructive comments of Dr. John Carranza and two anonymous reviewers.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, samples collection, analysis (grain size distribution, pH measurement, SEM–EDS and, MLA), evaluation of data and writing the manuscript were performed by GG. EA performed conceptualization, supervision, and co-writing of the manuscript.

Corresponding author

Correspondence to Gökçe Gürtekin.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürtekin, G., Aydar, E. Quantitative Mineralogy in Characterization of Historical Tailings: A Case from the Abandoned Balya Pb–Zn Mine, Western Turkey. Nat Resour Res 32, 195–212 (2023). https://doi.org/10.1007/s11053-022-10128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10128-6

Keywords

Navigation