Skip to main content
Log in

Exploring Multiscale Non-stationary Influence of Ore-Controlling Factors on Mineralization in 3D Geological Space

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The formation of mineral deposit is the coupled result of multiple ore-controlling geological factors in mineralization processes. Different ore-controlling factors affect the mineralization typically with different mechanisms at different scales. Geographically weighted regression (GWR) assumes the same bandwidth for all the ore-controlling factors, which is limited in handling multiscale issues simultaneously. Multiscale geographically weighted regression (MGWR) can provide optimal bandwidth for each independent variable. In this study, based on the program of GWR in 3D space, we implement the MGWR model in MATLAB language, and also verify the accuracy and stability of the GWR and MGWR models by comparing the predefined and estimated parameters of the two models based on designed simulation datasets. To detect the non-stationarity and multiple scales of the controls of geological bodies in natural deposits, with the Jinchuan Ni–Cu sulfide deposit as a case study, firstly, the multicollinearity of ore-controlling factors is excluded and the spatial non-stationarity of their impact on mineralization is detected; secondly, the results of two models are compared and high performance of both models are achieved; then, the non-stationary index and the influence scale for different ore-controlling factors are obtained; finally, the variations of parameter estimates of the two models are analyzed and the importance of the magma conduit to the mineralization is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Availability of data and material

The datasets generated during the current study are not publicly available due to a confidentiality agreement.

References

  • Barnes, S. J., Mungall, J. E., Vaillant, M. L., Godel, B., Lesher, C. M., Holwell, D., Lightfoot, P. C., Krivolutskaya, N., & Wei, B. (2017). Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores. American Mineralogist, 102(3), 473–506.

    Article  Google Scholar 

  • Barnes, S. J., & Robertson, J. C. (2018). Time scales and length scales in magma flow pathways and the origin of magmatic Ni-Cu-PGE ore deposits. Geoscience Frontiers, 10(1), 81–91.

    Google Scholar 

  • Blewett, R. S., Henson, P. A., Roy, I. G., Champion, D. C., & Cassidy, K. F. (2010). Scale-integrated architecture of a world-class gold mineral system: The Archaean eastern Yilgarn Craton, Western Australia. Precambrian Research, 183, 230–250.

    Article  Google Scholar 

  • Brunsdon, C., Fotheringham, A. S., & Charlton, M. (2002). Geographically weighted summary statistics: A framework for localized exploratory data analysis. Computers, Environment and Urban Systems, 26, 501–524.

    Article  Google Scholar 

  • Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive models. The Annals of Statistics, 17(2), 540–543.

    Google Scholar 

  • Carranza, E. J. M., de Souza Filho, C. R., Haddad-Martim, P. M., Nagayoshi, K., & Shimizu, I. (2019). Macro-scale ore-controlling faults revealed by micro-geochemical anomalies. Scientific Reports, 9, 4410.

    Article  Google Scholar 

  • Chen, L. M., Song, X. Y., Keays, R. R., Tian, Y. L., Wang, Y. S., Deng, Y. F., & Xiao, J. F. (2013). Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: Insights from platinum group element geochemistry. Economic Geology, 108(8), 1793–1811.

    Article  Google Scholar 

  • Cheng, J. Q., & Fotheringham, A. S. (2013). Multi-scale issues in cross-border comparative analysis. Geoforum, 46, 138–148.

    Article  Google Scholar 

  • Duan, J., Li, C., Qian, Z., Jiao, J., Ripley, E. M., & Feng, Y. (2016). Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Mineralium Deposita, 51, 557–574.

    Article  Google Scholar 

  • Fotheringham, A.S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships (1st ed.). Chichester: Wiley.

  • Fotheringham, A. S., Charlton, M., & Brunsdon, C. (1996). The geography of parameter space: An investigation of spatial non-stationarity. International Journal of Geographic Information Systems, 10(5), 605–627.

    Article  Google Scholar 

  • Fotheringham, A. S., Kelly, M., & Charlton, M. (2013). The demographic impacts of the Irish famine: Towards a greater geographical understanding. Transactions of the Institute of British Geographers, 38(2), 221–237.

    Article  Google Scholar 

  • Fotheringham, A. S., & Oshan, T. (2016). GWR and Multicollinearity: Dispelling the myth. Journal of Geographical Systems, 18(4), 303–329.

    Article  Google Scholar 

  • Fotheringham, A. S., Yang, W. B., & Kang, W. (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265.

    Article  Google Scholar 

  • Gelfand, A. E., Kim, H., Sirmans, C. F., & Banerjee, S. (2003). Spatial modelling with spatially varying coefficient processes. Journal of the American Statistical Association, 98, 387–396.

    Article  Google Scholar 

  • Groves, D., Santosh, M., & Zhang, L. (2020). A scale-integrated exploration model for orogenic gold deposits based on a mineral system approach. Geoscience Frontiers, 11(3), 20.

    Article  Google Scholar 

  • Guo, Z. W., Lai, J. Q., Zhang, K. N., Mao, X. C., Wang, Z. L., wen Guo, R. W., Deng, H., Sun, P. H., Zhang, S. H., Yu, M., Cui, Y. A., & Liu, J. X. (2020). Geosciences in Central South University: A state-of-the-art review. Journal of Central South University, 27(4), 975–996.

    Article  Google Scholar 

  • Hagemann, S. G., Lisitsin, V. A., & Huston, D. L. (2016). Mineral system analysis: Quo vadis. Ore Geology Reviews, 76, 504–522.

    Article  Google Scholar 

  • Huang, J. X., Mao, X. C., Chen, J., Deng, H., Jeffrey, M. D., & Liu, Z. K. (2020). Exploring spatially non-stationary relationships in the determinants of mineralization in 3D geological space. Natural Resource Research, 29(1), 439–458.

    Article  Google Scholar 

  • Huang, J. X., Mao, X. C., Deng, H., Liu, Z. K., Chen, J., & Xiao, K. Y. (2022). An improved GWR approach for exploring the anisotropic influence of ore-controlling factors on mineralization in 3D space. Natural Resource Research, 31(4), 2181–2196. https://doi.org/10.1007/s11053-021-09954-x

    Article  Google Scholar 

  • Kang, J., Chen, L. M., Yu, S. Y., Zheng, W. Q., Dai, Z. H., Zhou, S. H., & Ai, Q. X. (2022). Chromite geochemistry of the Jinchuan Ni-Cu sulfide-bearing ultramafic intrusion (NW China) and its petrogenetic implications. Ore Geology Reviews, 141, 104644.

    Article  Google Scholar 

  • LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. CRC Press.

  • Li, C., Xu, Z., de Waal, S. A., Ripley, E. M., & Maier, W. D. (2004). Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: Implications for ore genesis. Mineralium deposita, 39, 159–172.

    Article  Google Scholar 

  • Liang, Q. L., Song, X. Y., Wirth, R., Chen, L. M., Yu, S. Y., Krivolutskaya, N. A., & Dai, Z. H. (2022). Thermodynamic conditions control the valences state of semimetals thus affecting the behavior of PGE in magmatic sulfide liquids. Geochimica et Cosmochimica Acta, 321, 1–15.

    Article  Google Scholar 

  • Lightfoot, P. C., & Evans-Lamswood, D. (2015). Structural controls on the primary distribution of mafic–ultramafic intrusions containing Ni–Cu–Co–(PGE) sulfide mineralization in the roots of large igneous provinces. Ore Geology Reviews, 64, 354–386.

    Article  Google Scholar 

  • Liu, Z., Chen, J., Mao, X., Tang, L., Yu, S., Deng, H., Wang, J., Liu, Y., Li, S., & Bayless, R. C. (2021). Spatial association between orogenic gold mineralization and structures revealed by 3D prospectivity modeling: A case study of the Xiadian Gold Deposit, Jiaodong Peninsula China. Natural Resources Research, 30(6), 3987–4007.

    Article  Google Scholar 

  • Lü, Q.T., Dong, S.W., Tang, J. T., Shi, D. N., Chang, Y. F., & SinoProbe-03-CJ team. (2015). Multi-scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depth: A synthesis from SinoProbe-03. Chinese J. Geophysics, 58(12), 4319–4343

  • Mao, X. C., Li, L. L., Liu, Z. K., Zeng, R. Y., Dick, J. M., Yue, B., & Ai, Q. X. (2019). multiple magma conduits model of the Jinchuan Ni-Cu-(PGE) deposit, Northwestern China: Constraints from the geochemistry of platinum-group elements. Minerals, 9(3), 187.

    Article  Google Scholar 

  • Mao, X. C., Zhao, Y., Deng, H., Zhang, B., Liu, Z., Chen, J., Zou, Y., & Lai, J. (2018a). Quantitative analysis of intrusive body morphology and its relationship with Skarn mineralization—A case study of Fenghuangshan copper deposit, Tongling, Anhui, China. Transactions of Nonferrous Metals Society of China, 28, 151–162.

    Article  Google Scholar 

  • Mao, Y. J., Barnes, S. J., Duan, J., Qin, K. Z., Godel, B. M., & Jiao, J. (2018b). Morphology and particle size distribution of olivines and sulphides in the Jinchuan Ni-Cu sulphide deposit: Evidence for sulphide percolation in a crystal mush. Journal of Petrology, 59(9), 1701–1730.

    Google Scholar 

  • Marquardt, D. W. (1970). Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591–256.

    Article  Google Scholar 

  • Mungall, J. E., Andrews, D. R. A., Cabri, L. J., Sylvester, P. J., & Tubrett, M. (2005). Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochimica et Cosmochimica Acta, 69, 4349–4360.

    Article  Google Scholar 

  • Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). MGWR: A python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. International Journal of Geo-Information, 8(6), 269.

    Article  Google Scholar 

  • Porter, T. M. (2016). Regional tectonics, geology, magma chamber processes and mineralisation of the Jinchuan nickel-copper-PGE deposit, Gansu Province, China: A review. Geoscience Frontiers, 7, 431–451.

    Article  Google Scholar 

  • Rudd, R. E., & Broughton, J. Q. (2000). Concurrent coupling of length scales in solid state systems. Phys. Stat. Sol. (b), 217, 251–291.

    Article  Google Scholar 

  • Song, X. Y., Danyushevsky, L. V., Keays, R. R., Chen, L. M., Wang, Y. S., Tian, Y. L., & Xiao, J. F. (2012). Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of Jinchuan Ni-Cu sulfide deposit NW China. Mineralium Deposita, 47(3), 277–297.

    Article  Google Scholar 

  • Song, X. Y., Keays, R. R., Zhou, M. F., Qi, L., Ihlenfeld, C., & Xiao, J. F. (2009). Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit NW China. Geochimica et Cosmochimica Acta, 73(2), 404–424.

    Article  Google Scholar 

  • Su, S. G., Tang, Z. L., Luo, Z. H., Deng, J. F., Wu, G. Y., Zhou, M. F., Song, C., & Xiao, Q. H. (2014). Magmatic conduit metallogenic system. Acta Petrologica Sinica, 30(11), 3120–3130.

    Google Scholar 

  • Tang, Z. L., & Li, W. Y. (1995). The metallogenetic model and geological characteristics of the Jinchuan Pt-bearing Ni-Cu sulfide deposit. Geological Publishing House.

    Google Scholar 

  • Tian, Y., Bao, G., Tang, Z., & Wang, Y. (2009). Geological and geochemical characteristics of the magma conduit-type orebodies of Jinchuan Cu-Ni sulfide deposit. Acta Geologica Sinica, 83(10), 1515–1525.

    Google Scholar 

  • Wang, C. (2004). Multi-scale modeling and related resolution approach. Complex Systems and Complexity Science, 1(1), 9–19.

    Google Scholar 

  • Wolf, L. J., Oshan, T. M., & Fotheringham, A. S. (2017). Single and multiscale models of process spatial heterogeneity. Geographical Analysis., 50(3), 223–246.

    Article  Google Scholar 

  • Yao, Z., Mungall, J. E., & Qin, K. (2020). A preliminary model for the migration of sulfide droplets in a magmatic conduit and the significance of volatiles. Journal of Petrology, 12, 12.

    Google Scholar 

  • Yu, H., Fotheringham, A. S., Li, Z., Oshan, T., & Wolf, L. J. (2020). On the measurement of bias in geographically weighted regression models. Spatial Statistics, 38, 1–18.

    Article  Google Scholar 

  • Zeng, R., Lai, J., Mao, X., Zhao, Y., Liu, P., Zhu, J., Yue, B., & Ai, Q. (2016). Distinction of platinum group elements geochemistry in Jinchuan Cu-Ni sulfide deposit and its implication for magmatic evolution. The Chinese Journal of Nonferrous Metals, 26(1), 149–163.

    Google Scholar 

  • Zhang, W., Wu, T. R., Feng, J. C., Zheng, R. G., & He, Y. K. (2013). Time constraints for the closing of the Paleo-Asian Ocean in the Northern Alxa Region: Evidence from Wuliji granites. Science China Earth Sciences, 56, 153–163.

    Article  Google Scholar 

  • Zhao, J., Wang, W., & Cheng, Q. (2014). Application of geographically weighted regression to identify spatially non-stationary relationships between Fe mineralization and its controlling factors in eastern Tianshan, China. Ore Geology Reviews, 57, 628–638.

    Article  Google Scholar 

  • Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6), 3415–3424.

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (Nos. 42130810, 42172328, 41972309, 42072325, 42030809), the Natural Science Foundation of Hunan Province (2020JJ4693).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhankun Liu.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Appendix: Implementation Code of MGWR Function

Appendix: Implementation Code of MGWR Function

figure afigure a

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, Z., Deng, H. et al. Exploring Multiscale Non-stationary Influence of Ore-Controlling Factors on Mineralization in 3D Geological Space. Nat Resour Res 31, 3079–3100 (2022). https://doi.org/10.1007/s11053-022-10112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10112-0

Keywords

Navigation