Skip to main content

Advertisement

Log in

Data-Driven Modeling Approach to Predict the Recovery Performance of Low-Salinity Waterfloods

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Low-salinity waterflooding (LSWF) has, in the past decade, attained a lot of attention to enhance oil recovery. In LSWF, diluted water is injected into an oil reservoir to improve oil recovery. The injected low-saline water changes the wettability of the reservoir, which leads to higher oil recovery. The recovery of an oil reservoir can be predicted from simulators, which are tedious, expensive, and time-consuming. Therefore, there is a need for a simple, quick, and inexpensive substitute to predict the oil recovery factor for low-salinity waterfloods. This paper presents a novel empirical correlation based on a feed-forward neural network to predict LSWF recovery efficiency in a heterogeneous reservoir at and beyond water breakthrough. The proposed model is valid for a broad range of dimensionless input parameters—degree of dilution of high saline water, mobility ratio, degree of reservoir heterogeneity, permeability anisotropy ratio, API gravity, and production water cut. The new empirical correlation was developed using 20,000 simulated data points obtained from simulation results to cover a wide range of input values. The LSWF simulation model was developed and validated with a model of a real carbonate reservoir located in the Madison formation in Wyoming. The artificial neural network (ANN) model parameters were optimized by conducting extensive sensitivities of ANN parameters (hidden layer neurons, training algorithms, and transfer functions). Moreover, an interesting trend analysis was conducted to validate the physical behavior of the ANN model, and a comparison with the unseen dataset was performed. To evaluate the performance of the newly developed correlation, three statistical indices were used, including the average absolute percentage error (AAPE). AAPE was 1.69% and 1.84% for the training and testing datasets, respectively. The proposed ANN model is limited to a single-stage, low-saline waterfloods for a 5-spot pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. For conversion of all oilfield units to SI unit, see “Appendix”.

References

  • Ahmadi, M. A. (2012). Neural network based unified particle swarm optimization for prediction of asphaltene precipitation. Fluid Phase Equilibria, 314, 46–51. https://doi.org/10.1016/j.fluid.2011.10.016.

    Article  Google Scholar 

  • Ahmadloo, F., Asghari, K., & Renouf, G. (2010). Performance prediction of waterflooding in western Canadian heavy oil reservoirs using artificial neural network. Energy & Fuels, 24, 2520–2526. https://doi.org/10.1021/ef9013218.

    Article  Google Scholar 

  • Al-Dousari, M. M., & Garrouch, A. A. (2013). An artificial neural network model for predicting the recovery performance of surfactant polymer floods. Journal of Petroleum Science and Engineering, 109, 51–62. https://doi.org/10.1016/j.petrol.2013.08.012.

    Article  Google Scholar 

  • AlHammadi, M., Mahzari, P., & Sohrabi, M. (2018). Fundamental investigation of underlying mechanisms behind improved oil recovery by low salinity water injection in carbonate rocks. Fuel, 220, 345–357. https://doi.org/10.1016/j.fuel.2018.01.136.

    Article  Google Scholar 

  • Ali, S. M. F., & Thomas, S. (1996). The promise and problems of enhanced oil recovery methods. Journal of Canadian Petroleum Technology. https://doi.org/10.2118/96-07-07.

    Article  Google Scholar 

  • Alkinani, H. H., Al-Hameedi, A. T. T., Dunn-Norman, S., Flori, R. E., Alsaba, M. T., & Amer, A. S. (2019). Applications of artificial neural networks in the petroleum industry: A review. In SPE middle east oil and gas show and conference. Society of Petroleum Engineers. https://doi.org/10.2118/195072-MS.

  • Alotaibi, M. B., Azmy, R., & Nasr-El-Din, H. A. (2010). Wettability challenges in carbonate reservoirs. In SPE improved oil recovery symposium. Society of Petroleum Engineers. https://doi.org/10.2118/129972-MS.

  • Alotaibi, M. B., Nasralla, R. A., & Nasr-El-Din, H. A. (2011). Wettability studies using low-salinity water in sandstone reservoirs. SPE Reservoir Evaluation & Engineering, 14(06), 713–725. https://doi.org/10.2118/149942-PA.

    Article  Google Scholar 

  • Althani, M. (2014). An evaluation of low salinity waterflooding in carbonates using simulation and economics. MS Thesis Report, Colorado School of Mines, United States.

  • Althani, M. G., & Hoffman, B. T. (2015). A practical approach for modeling low salinity waterflooding in carbonate reservoirs. In SPE middle east oil and gas show and conference, MEOS, proceedings (Vol. 2015-January, pp. 2596–2610). Society of Petroleum Engineers (SPE). https://doi.org/10.2118/172788-ms.

  • Amar, M. N., & Jahanbani Ghahfarokhi, A. (2020). Prediction of CO2 diffusivity in brine using white-box machine learning. Journal of Petroleum Science and Engineering, 190, 107037. https://doi.org/10.1016/j.petrol.2020.107037.

    Article  Google Scholar 

  • Amar, M. N., Jahanbani Ghahfarokhi, A., & Zeraibi, N. (2020). Predicting thermal conductivity of carbon dioxide using group of data-driven models. Journal of the Taiwan Institute of Chemical Engineers, 113, 165–177. https://doi.org/10.1016/j.jtice.2020.08.001.

    Article  Google Scholar 

  • Amato, F., López, A., Peña-Méndez, E. M., Vaňhara, P., Hampl, A., & Havel, J. (2013). Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine, 11(2), 47–58. https://doi.org/10.2478/v10136-012-0031-x.

    Article  Google Scholar 

  • Ansari, A., Heras, M., Nones, J., Mohammadpoor, M., & Torabi, F. (2019). Predicting the performance of steam assisted gravity drainage (SAGD) method utilizing artificial neural network (ANN). Petroleum. https://doi.org/10.1016/j.petlm.2019.04.001.

    Article  Google Scholar 

  • Aronofsky, J. S., & Ramey, H. J. (1956). Mobility ratio—Its influence on injection or production histories in five-spot water flood. Journal of Petroleum Technology, 8(09), 205–210. https://doi.org/10.2118/641-G.

    Article  Google Scholar 

  • Azamathulla, H. M., Ghani, A. A., & Fei, S. Y. (2012). ANFIS-based approach for predicting sediment transport in clean sewer. Applied Soft Computing Journal, 12(3), 1227–1230. https://doi.org/10.1016/j.asoc.2011.12.003.

    Article  Google Scholar 

  • Bartels, W.-B., Mahani, H., Berg, S., & Hassanizadeh, S. M. (2019). Literature review of low salinity waterflooding from a length and time scale perspective. Fuel, 236, 338–353. https://doi.org/10.1016/j.fuel.2018.09.018.

    Article  Google Scholar 

  • Bello, O., & Asafa, T. (2014). A functional networks softsensor for flowing bottomhole pressures and temperatures in multiphase production wells. SPE Intelligent Energy Conference & Exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/167881-MS.

    Article  Google Scholar 

  • Ben Mahmud, H., Arumugam, S., & Mahmud, W. (2019). Potential of low-salinity waterflooding technology to improve oil recovery. In Enhanced oil recovery processesNew technologies. IntechOpen. https://doi.org/10.5772/intechopen.88082.

  • Bernard, G. G. (1967). Effect of floodwater salinity on recovery of oil from cores containing clays. In SPE California regional meeting. Society of Petroleum Engineers. https://doi.org/10.2118/1725-MS.

  • Catain, J. (2010). Numerical simulation of low salinity water flooding: Wettability alteration for enhanced oil recovery. Master’s thesis, NTNU, Norway.

  • Chen, Y., Xie, Q., Sari, A., Brady, P. V., & Saeedi, A. (2018). Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs. Fuel, 215, 171–177. https://doi.org/10.1016/j.fuel.2017.10.031.

    Article  Google Scholar 

  • Corey, A. (1954). The interrelation between gas and oil relative permeabilities. Retrieved April 28, 2020, from http://www.discovery-group.com/pdfs/Corey_1954.pdf.

  • Dang, C. T. Q., Nghiem, L. X., Chen, Z. J., & Nguyen, Q. P. (2013). Modeling low salinity waterflooding: ion exchange, geochemistry and wettability alteration. In SPE annual technical conference and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/166447-MS.

  • Dang, C., Nghiem, L., Nguyen, N., Chen, Z., & Nguyen, Q. (2016). Mechanistic modeling of low salinity water flooding. Journal of Petroleum Science and Engineering, 146, 191–209. https://doi.org/10.1016/j.petrol.2016.04.024.

    Article  Google Scholar 

  • Delamaide, E., Bazin, B., Rousseau, D., & Degre, G. (2014). Chemical EOR for heavy oil: The Canadian experience. In SPE EOR conference at oil and gas West Asia. Society of Petroleum Engineers. https://doi.org/10.2118/169715-MS.

  • Den Ouden, L., Nasralla, R. A., Guo, H., Bruining, H., & Van Kruijsdijk, C. P. J. W. (2015). Calcite dissolution behaviour during low salinity water flooding in carbonate rock. In IOR 2015-18th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201412102.

  • Du, Y. C., & Stephanus, A. (2018). Levenberg-Marquardt neural network algorithm for degree of arteriovenous fistula stenosis classification using a dual optical photoplethysmography sensor. Sensors (Switzerland). https://doi.org/10.3390/s18072322.

    Article  Google Scholar 

  • Ebaga-Ololo, J., & Chon, B. H. (2017). Prediction of polymer flooding performance with an artificial neural network: A two-polymer-slug case. Energies, 10(7), 844. https://doi.org/10.3390/en10070844.

    Article  Google Scholar 

  • Egbe, D. I. O., Jahanbani Ghahfarokhi, A., Nait Amar, M., & Torsæter, O. (2020). Application of low-salinity waterflooding in carbonate cores: A geochemical modeling study. Natural Resources Research. https://doi.org/10.1007/s11053-020-09712-5.

    Article  Google Scholar 

  • Elkamel, A. (1998). An artificial neural network for predicting and optimizing immiscible flood performance in heterogeneous reservoirs. Computers & Chemical Engineering, 22(11), 1699–1709. https://doi.org/10.1016/S0098-1354(98)00237-3.

    Article  Google Scholar 

  • Elkatatny, S., Tariq, Z., & Mahmoud, M. (2016). Real time prediction of drilling fluid rheological properties using Artificial Neural Networks visible mathematical model (white box). Journal of Petroleum Science and Engineering, 146, 1202–1210. https://doi.org/10.1016/j.petrol.2016.08.021.

    Article  Google Scholar 

  • Fjelde, I., Asen, S. M., & Omekeh, A. V. (2012). Low salinity water flooding experiments and interpretation by simulations. In SPE improved oil recovery symposium. Society of Petroleum Engineers. https://doi.org/10.2118/154142-MS.

  • Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989–993. https://doi.org/10.1109/72.329697.

    Article  Google Scholar 

  • Haji-Savameri, M., Menad, N. A., Norouzi-Apourvari, S., & Hemmati-Sarapardeh, A. (2020). Modeling dew point pressure of gas condensate reservoirs: Comparison of hybrid soft computing approaches, correlations, and thermodynamic models. Journal of Petroleum Science and Engineering, 184, 106558. https://doi.org/10.1016/j.petrol.2019.106558.

    Article  Google Scholar 

  • Hassan, A., Elkatatny, S., & Abdulraheem, A. (2019). Intelligent prediction of minimum miscibility pressure (MMP) during CO2 flooding using artificial intelligence techniques. Sustainability, 11(24), 7020. https://doi.org/10.3390/su11247020.

    Article  Google Scholar 

  • Hassan, A., Elkatatny, S., Mahmoud, M., & Abdulraheem, A. (2018). A new approach to characterize CO2 flooding utilizing artificial intelligence techniques. In Society of petroleum engineersSPE Kingdom of Saudi Arabia annual technical symposium and exhibition 2018, SATS 2018. Society of Petroleum Engineers. https://doi.org/10.2118/192252-ms.

  • Haykin, S. (1999). Neural networks: A comprehensive foundation. Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  • Hirasaki, G., Miller, C. A., & Puerto, M. (2011). Recent advances in surfactant EOR. SPE Journal, 16(04), 889–907. https://doi.org/10.2118/115386-PA.

    Article  Google Scholar 

  • Hosseinzade Khanamiri, H., Baltzersen Enge, I., Nourani, M., Stensen, J. Å., Torsæter, O., & Hadia, N. (2016). EOR by low salinity water and surfactant at low concentration: Impact of injection and in situ brine composition. Energy & Fuels, 30(4), 2705–2713. https://doi.org/10.1021/acs.energyfuels.5b02899.

    Article  Google Scholar 

  • Huang, Y. F., Huang, G. H., Dong, M. Z., & Feng, G. M. (2003). Development of an artificial neural network model for predicting minimum miscibility pressure in CO2 flooding. Journal of Petroleum Science and Engineering, 37(1–2), 83–95. https://doi.org/10.1016/S0920-4105(02)00312-1.

    Article  Google Scholar 

  • Hutchinson, C. A. (1959). Reservoir inhomogeneity assessment and control. Pet. Eng., 31, B19–B26.

    Google Scholar 

  • Jadhunandan, P. P., & Morrow, N. R. (1995). Effect of wettability on waterflood recovery for crude-oil/brine/rock systems. SPE Reservoir Engineering, 10(01), 40–46. https://doi.org/10.2118/22597-PA.

    Article  Google Scholar 

  • Jerauld, G. R., Webb, K. J., Lin, C.-Y., & Seccombe, J. (2006). Modeling low-salinity waterflooding. In SPE annual technical conference and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/102239-MS.

  • Jerauld, Gary R., Webb, K. J., Lin, C.-Y., & Seccombe, J. C. (2008). Modeling low-salinity waterflooding. SPE Reservoir Evaluation & Engineering, 11(06), 1000–1012. https://doi.org/10.2118/102239-PA.

    Article  Google Scholar 

  • Kakati, A., & Sangwai, J. S. (2018). Wettability alteration of mineral surface during low-salinity water flooding: role of salt type, pure alkanes, and model oils containing polar components. Energy & Fuels, 32(3), 3127–3137. https://doi.org/10.1021/acs.energyfuels.7b03727.

    Article  Google Scholar 

  • Kalam, S., Abu-Khamsin, S. A., Al-Yousef, H. Y., & Gajbhiye, R. (2020). A novel empirical correlation for waterflooding performance prediction in stratified reservoirs using artificial intelligence. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05158-1.

    Article  Google Scholar 

  • Kalam, S., Alnuaim, S., & Rammay, M. H. (2015). A new algorithm to quantify water coning in hydraulically fractured tight oil reservoirs. In IET conference publications (Vol. 2015). Institution of Engineering and Technology. https://doi.org/10.1049/cp.2015.0577.

  • Kalam, S., Alnuaim, S. A., & Rammay, M. H. (2016a). Application of artificial intelligence for water coning problem in hydraulically fractured tight oil reservoirs. In Offshore technology conference Asia. Offshore Technology Conference. https://doi.org/10.4043/26450-MS.

  • Kalam, S., Alnuaim, S. A., & Rammay, M. H. (2016b). Application of artificial intelligence for water coning problem in hydraulically fractured tight oil reservoirs. In offshore technology conference Asia. Offshore Technology Conference. https://doi.org/10.4043/26450-MS.

  • Kalam, S., Khan, M. R., Tariq, Z., Siddique, F. A., Abdulraheem, A., & Khan, R. A. (2019). A novel correlation to predict gas flow rates utilizing artificial intelligence: An industrial 4.0 approach. In SPE/PAPG Pakistan section annual technical symposium and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/201170-MS.

  • Kalogirou, S. A., Panteliou, S., & Dentsoras, A. (1999). Artificial neural networks used for the performance prediction of a thermosiphon solar water heater. Renewable Energy, 18(1), 87–99. https://doi.org/10.1016/S0960-1481(98)00787-3.

    Article  Google Scholar 

  • Kamal, M. S., Hussein, I. A., & Sultan, A. S. (2017). Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy & Fuels, 31(8), 7701–7720. https://doi.org/10.1021/acs.energyfuels.7b00353.

    Article  Google Scholar 

  • Katende, A., & Sagala, F. (2019). A critical review of low salinity water flooding: Mechanism, laboratory and field application. Journal of Molecular Liquids, 278, 627–649. https://doi.org/10.1016/j.molliq.2019.01.037.

    Article  Google Scholar 

  • Kazemi Nia Korrani, A., Jerauld, G. R., & Sepehrnoori, K. (2016). Mechanistic modeling of low-salinity waterflooding through coupling a geochemical package with a compositional reservoir simulator. SPE Reservoir Evaluation & Engineering, 19(01), 142–162. https://doi.org/10.2118/169115-PA.

    Article  Google Scholar 

  • Khamidy, N. I., Tariq, Z., & Syihab, Z. (2019). Development of ANN-based predictive model for miscible CO2 flooding in sandstone reservoir. In SPE middle east oil and gas show and conference. Society of Petroleum Engineers. https://doi.org/10.2118/194726-MS.

  • Khan, M. R., Alnuaim, S., Tariq, Z., & Abdulraheem, A. (2019a). Machine learning application for oil rate prediction in artificial gas lift wells. In SPE middle east oil and gas show and conference. Society of Petroleum Engineers. https://doi.org/10.2118/194713-MS.

  • Khan, R. A., & Awotunde, A. A. (2018). Determination of vertical/horizontal well type from generalized field development optimization. Journal of Petroleum Science and Engineering, 162, 652–665. https://doi.org/10.1016/j.petrol.2017.10.083.

    Article  Google Scholar 

  • Khan, M. R., Kalam, S., Khan, R. A., Tariq, Z., & Abdulraheem, A. (2019b). Comparative analysis of intelligent algorithms to predict the minimum miscibility pressure for hydrocarbon gas flooding. In Society of petroleum engineersAbu Dhabi international petroleum exhibition and conference 2019, ADIP 2019. Society of Petroleum Engineers. https://doi.org/10.2118/197868-ms.

  • Khan, M. R., Kalam, S., Tariq, Z., & Abdulraheem, A. (2019c). A novel empirical correlation to predict the dew point pressure using intelligent algorithms. In Society of petroleum engineersAbu Dhabi international petroleum exhibition and conference 2019, ADIP 2019. Society of Petroleum Engineers. https://doi.org/10.2118/197951-ms.

  • Kulkarni, M. M., & Rao, D. N. (2005). Experimental investigation of miscible and immiscible Water-Alternating-Gas (WAG) process performance. Journal of Petroleum Science and Engineering, 48(1–2), 1–20. https://doi.org/10.1016/j.petrol.2005.05.001.

    Article  Google Scholar 

  • Lager, A., Webb, K., Black, C. J. J., Singleton, M., & Sorbie, K. S. (2008a). Low salinity oil recovery—An experimental investigation. Petrophysics, 49(1), 28–35.

    Google Scholar 

  • Lager, A., Webb, K., Collins, I. R., & Richmond, D. M. (2008b). LoSal enhanced oil recovery: Evidence of enhanced oil recovery at the reservoir scale. In SPE symposium on improved oil recovery. Society of Petroleum Engineers. https://doi.org/10.2118/113976-MS.

  • Lake, L. W., Johns, R., Rossen, B., & Pope, G. (2014). Fundamentals of enhanced oil recovery (2nd ed.). London: Society of Petroleum Engineers.

    Google Scholar 

  • Lake, L. W., Schmidt, R. L., & Venuto, P. B. (1992). A niche for enhanced oil recovery in the 1990s. Oilfield Review4(1), 55–61.

    Google Scholar 

  • Le Van, S., & Chon, B. H. (2017). Evaluating the critical performances of a CO2—Enhanced oil recovery process using artificial neural network models. Journal of Petroleum Science and Engineering, 157, 207–222. https://doi.org/10.1016/j.petrol.2017.07.034.

    Article  Google Scholar 

  • Mahani, H., Keya, A. L., Berg, S., Bartels, W.-B., Nasralla, R., & Rossen, W. (2015a). Driving mechanism of low salinity flooding in carbonate rocks. In EUROPEC 2015. Society of Petroleum Engineers. https://doi.org/10.2118/174300-MS.

  • Mahani, H., Keya, A. L., Berg, S., Bartels, W.-B., Nasralla, R., & Rossen, W. R. (2015b). Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates. Energy & Fuels, 29(3), 1352–1367. https://doi.org/10.1021/ef5023847.

    Article  Google Scholar 

  • Mahboob, A., Alnuaim, S., & Rammay, M. H. (2016). A rigorous correlation for quantitative prediction of water cresting in multi-fractured horizontal wells. In SPE Kingdom of Saudi Arabia annual technical symposium and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/182778-MS.

  • Marcé, R., Comerma, M., García, J. C., & Armengol, J. (2004). A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnology and Oceanography: Methods, 2(11), 342–355. https://doi.org/10.4319/lom.2004.2.342.

    Article  Google Scholar 

  • Mohammed, M., & Babadagli, T. (2015). Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems. Advances in Colloid and Interface Science, 220, 54–77. https://doi.org/10.1016/j.cis.2015.02.006.

    Article  Google Scholar 

  • Morvan, M., Degre, G., Leng, J., Masseion, C., Bouillot, J., Zaitoun, A., & Moreau, P. (2009). New viscoelastic fluid for chemical EOR. In 15th European symposium on improved oil recovery 2009 (pp. 46–63). https://doi.org/10.3997/2214-4609.201404820.

  • Nasralla, R. A., & Nasr-El-Din, H. A. (2014). Double-layer expansion: Is it a primary mechanism of improved oil recovery by low-salinity waterflooding? SPE Reservoir Evaluation & Engineering, 17(01), 49–59. https://doi.org/10.2118/154334-PA.

    Article  Google Scholar 

  • Nooruddin, H. A., Anifowose, F., & Abdulraheem, A. (2013). Applying artificial intelligence techniques to develop permeability predictive models using mercury injection capillary-pressure data. In SPE Saudi Arabia Section technical symposium and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/168109-MS.

  • Nowroozi, S., Ranjbar, M., Hashemipour, H., & Schaffie, M. (2009). Development of a neural fuzzy system for advanced prediction of dew point pressure in gas condensate reservoirs. Fuel Processing Technology, 90(3), 452–457. https://doi.org/10.1016/j.fuproc.2008.11.009.

    Article  Google Scholar 

  • Pooryousefy, E., Xie, Q., Chen, Y., Sari, A., & Saeedi, A. (2018). Drivers of low salinity effect in sandstone reservoirs. Journal of Molecular Liquids, 250, 396–403. https://doi.org/10.1016/j.molliq.2017.11.170.

    Article  Google Scholar 

  • Popa, A. S., O’Toole, C., Munoz, J., Cassidy, S., Tubbs, D., & Ershaghi, I. (2017). A neural network approach for modeling water distribution system. In SPE western regional meeting. Society of Petroleum Engineers. https://doi.org/10.2118/185678-MS.

  • Rammay, M. H., & Abdulraheem, A. (2017). PVT correlations for Pakistani crude oils using artificial neural network. Journal of Petroleum Exploration and Production Technology, 7(1), 217–233. https://doi.org/10.1007/s13202-016-0232-z.

    Article  Google Scholar 

  • Rao, D. (2001). Gas injection EOR—A new meaning in the new millennium. Journal of Canadian Petroleum Technology. https://doi.org/10.2118/01-02-DAS.

    Article  Google Scholar 

  • Reginato, L. F., Carneiro, C. C., Gioria, R. S., & Pinto, M. S. (2019). Prediction of wettability alteration using the artificial neural networks in the salinity control of water injection in carbonate reservoirs. In Offshore technology conference Brasil. Offshore Technology Conference. https://doi.org/10.4043/29916-MS.

  • Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S., & Kalin, L. (2014). Flood flow forecasting using ANN, ANFIS and regression models. Neural Computing and Applications, 25(1), 25–37. https://doi.org/10.1007/s00521-013-1443-6.

    Article  Google Scholar 

  • RezaeiDoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms. Energy & Fuels, 23(9), 4479–4485. https://doi.org/10.1021/ef900185q.

    Article  Google Scholar 

  • Romanuka, J., Hofman, J., Ligthelm, D. J., Suijkerbuijk, B., Marcelis, F., Oedai, S., et al. (2012). Low salinity EOR in carbonates. In SPE improved oil recovery symposium. Society of Petroleum Engineers. https://doi.org/10.2118/153869-MS.

  • Saikia, B. D., Mahadevan, J., & Rao, D. N. (2018). Exploring mechanisms for wettability alteration in low-salinity waterfloods in carbonate rocks. Journal of Petroleum Science and Engineering, 164, 595–602. https://doi.org/10.1016/j.petrol.2017.12.056.

    Article  Google Scholar 

  • Seccombe, J. C., Lager, A., Webb, K. J., Jerauld, G., & Fueg, E. (2008). Improving wateflood recovery: LoSalTM EOR field evaluation. In SPE symposium on improved oil recovery. Society of Petroleum Engineers. https://doi.org/10.2118/113480-MS.

  • Sen, R. (2008). Biotechnology in petroleum recovery: The microbial EOR. Progress in Energy and Combustion Science, 34(6), 714–724. https://doi.org/10.1016/j.pecs.2008.05.001.

    Article  Google Scholar 

  • Sheng, J. J. (2014). Critical review of low-salinity waterflooding. Journal of Petroleum Science and Engineering, 120, 216–224. https://doi.org/10.1016/j.petrol.2014.05.026.

    Article  Google Scholar 

  • Siggel, L., Santa, M., Hansch, M., Nowak, M., Ranft, M., Weiss, H., et al. (2012). A new class of viscoelastic surfactants for enhanced oil recovery. In SPE improved oil recovery symposium. Society of Petroleum Engineers. https://doi.org/10.2118/153969-MS.

  • Skrettingland, K., Holt, T., Tweheyo, M. T., & Skjevrak, I. (2011). Snorre low-salinity-water injection-coreflooding experiments and single-well field pilot. SPE Reservoir Evaluation & Engineering, 14(02), 182–192. https://doi.org/10.2118/129877-PA.

    Article  Google Scholar 

  • Suijkerbuijk, B., Hofman, J., Ligthelm, D. J., Romanuka, J., Brussee, N., van der Linde, H., & Marcelis, F. (2012). Fundamental investigations into wettability and low salinity flooding by parameter isolation. In SPE improved oil recovery symposium. Society of Petroleum Engineers. https://doi.org/10.2118/154204-MS.

  • Taber, J. J., Martin, F. D., & Seright, R. S. (1997). EOR screening criteria revisited—Part 1: Introduction to screening criteria and enhanced recovery field projects. SPE Reservoir Engineering, 12(03), 189–198. https://doi.org/10.2118/35385-PA.

    Article  Google Scholar 

  • Tang, G. Q., & Morrow, N. R. (1997). Salinity, temperature, oil composition, and oil recovery by waterflooding. SPE Reservoir Engineering, 12(04), 269–276. https://doi.org/10.2118/36680-PA.

    Article  Google Scholar 

  • Thomas, S. (2006). Chemical EOR: The Past-Does It Have a Future? SPE Distinguished Lecturer Series. SPE-108828-DL.

  • Uysal, G., Şorman, A. A., & Şensoy, A. (2016). Streamflow forecasting using different neural network models with satellite data for a snow dominated region in Turkey. In Procedia engineering (Vol. 154, pp. 1185–1192). Elsevier Ltd. https://doi.org/10.1016/j.proeng.2016.07.526.

  • Warren, J. E. (1964). Prediction of waterflood behavior in a stratified system. Society of Petroleum Engineers Journal, 4(02), 149–157. https://doi.org/10.2118/581-PA.

    Article  Google Scholar 

  • Webb, K. J., Black, C. J. J., & Al-Ajeel, H. (2003). Low salinity oil recovery—Log-inject-log. In Middle east oil show. Society of Petroleum Engineers. https://doi.org/10.2118/81460-MS.

  • Yildiz, H. O., & Morrow, N. R. (1996). Effect of brine composition on recovery of Moutray crude oil by waterflooding. Journal of Petroleum Science and Engineering, 14(3–4), 159–168. https://doi.org/10.1016/0920-4105(95)00041-0.

    Article  Google Scholar 

  • Yilmaz, I., Marschalko, M., Bednarik, M., Kaynar, O., & Fojtova, L. (2012). Neural computing models for prediction of permeability coefficient of coarse-grained soils. Neural Computing and Applications, 21(5), 957–968. https://doi.org/10.1007/s00521-011-0535-4.

    Article  Google Scholar 

  • Yousef, A. A., Al-Saleh, S., & Al-Jawfi, M. S. (2011). Smart waterflooding for carbonate reservoirs: Salinity and role of ions. In SPE middle east oil and gas show and conference. Society of Petroleum Engineers. https://doi.org/10.2118/141082-MS.

  • Yousef, A. A., Al-Saleh, S., & Al-Jawfi, M. S. (2012). Improved/enhanced oil recovery from carbonate reservoirs by tuning injection water salinity and ionic content. In SPE improved oil recovery symposium. Society of Petroleum Engineers. https://doi.org/10.2118/154076-MS.

  • Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. S. (2010). Laboratory investigation of novel oil recovery method for carbonate reservoirs. In Canadian unconventional resources and international petroleum conference. Society of Petroleum Engineers. https://doi.org/10.2118/137634-MS.

  • Yousef, A. A., Al-Saleh, S., Al-Kaabi, A., & Al-Jawfi, M. S. (2011b). Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs. SPE Reservoir Evaluation & Engineering, 14(05), 578–593. https://doi.org/10.2118/137634-PA.

    Article  Google Scholar 

  • Yousef, A. A., Liu, J. S., Blanchard, G. W., Al-Saleh, S., Al-Zahrani, T., Al-Zahrani, R. M., et al. (2012). Smart waterflooding: Industry. In SPE annual technical conference and exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/159526-MS.

Download references

Acknowledgments

The authors would like to acknowledge the support provided by the College of Petroleum and Geoscience (CPG) at King Fahd University of Petroleum & Minerals (KFUPM) and Dawood University of Engineering & Technology (DUET) for publishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shams Kalam.

Appendix: Conversion Factors from Oilfield Units to SI Units

Appendix: Conversion Factors from Oilfield Units to SI Units

Variable

Oilfield unit

SI unit

Conversion factor (multiply oilfield unit)

Concentration

lb/STB

kg/m3

2.85

Density

lb/ft3

kg/m3

16.02

Formation volume factor

bbl/STB

m3/m3

1

Gas oil ratio

scf/STB

m3/m3

0.1781

Length

ft

m

0.3048

Pressure

psi

Pa

6894.76

Viscosity

cP

Pa-s

10−3

Volume

MMbbl

m3

0.15899 × 106

STB

m3

0.15899

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalam, S., Khan, R.A., Khan, S. et al. Data-Driven Modeling Approach to Predict the Recovery Performance of Low-Salinity Waterfloods. Nat Resour Res 30, 1697–1717 (2021). https://doi.org/10.1007/s11053-020-09803-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09803-3

Keywords

Navigation