Skip to main content
Log in

Micro-structural Damage to Coal Induced by Liquid CO2 Phase Change Fracturing

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The technology of liquid carbon dioxide phase change fracturing (LCPCF) was used to enhance the permeability of coal seams. The combination of mechanical tests, scanning electron microscopy (SEM) and high-pressure mercury intrusion porosimetry was adopted to study the damage characteristics of coal micro-structures. LCPCF had mechanical damage effects on coal micro-structures to varying degrees, and the maximum reduction in compressive strength reached approximately 25%. SEM results confirmed that surface morphology of coal was remarkably altered after conducting LCPCF. The fractal dimension (D) of coal subjected to LCPCF ranged from 1.5186 to 1.8794, demonstrating the three-stage changing trends. HP-MIP results showed that LCPCF mainly affected pores of > 100 nm within coal, and pores < 100 nm were hardly influenced. When 1.26 L of liquid CO2 was used to conduct physical blasting, at distance of < 1.5 m, the influence of LCPCF was strengthened. Affected by the high-energy gas and shock wave generated by LCPCF, meso-pores within coal were damaged and shifted to the larger pores, resulting in the increase in the number of macro-pores and micro-fractures. When distance was > 1.5 m, the obvious reduction in macro-pore and micro-fracture volumes implied that the fracturing effect was attenuated with the increase in distance. Once distance was > 6.0 m, pore and fracture structures within coal tended to be stable. Thus, in this study, the influence scope of LCPCF was around 6.0 m for a single fracturing borehole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Al-Ameri, A., Gamadi, T., & Ispas, I. (2018). Evaluation of the near fracture face formation damage caused by the spontaneously imbibed fracturing fluid in unconventional gas reservoirs. Journal of Petroleum Science and Engineering, 171, 23–36.

    Google Scholar 

  • Ao, X., Lu, Y. Y., Tang, J. R., Chen, Y. T., & Li, H. L. (2017). Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2. Journal of CO2 Utilization, 20, 274–281.

    Google Scholar 

  • Behera, S. K., Meena, H., Chakraborty, S., & Meikap, B. C. (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4), 621–629.

    Google Scholar 

  • Busch, A., Gensterblum, Y., & Krooss, B. M. (2007). High-pressure sorption of nitrogen, carbon dioxide, and their mixtures on argonne premium coals. Energy & Fuels, 21(3), 1640–1645.

    Google Scholar 

  • Cavelan, A., Boussafir, M., Rozenbaum, O., & Laggoun-Defarge, F. (2019). Organic petrography and pore structure characterization of low-mature and gas-mature marine organic-rich mudstones: Insights into porosity controls in gas shale systems. Marine and Petroleum Geology, 103, 331–350.

    Google Scholar 

  • Chen, H. D., Wang, Z. F., Chen, X. E., Chen, X. J., & Wang, L. G. (2017). Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. Journal of CO2 Utilization, 19, 112–119.

    Google Scholar 

  • Dendisova, M., Jeništová, A., Parchaňská-Kokaislová, A., Matejka, P., Prokopec, V., & Svecova, M. (2018). The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Analytica Chimica Acta, 1031, 1–14.

    Google Scholar 

  • Gao, F., Tang, L. H., Zhou, K. P., Zhang, Y. A., & Ke, B. (2018). Mechanism analysis of liquid carbon dioxide phase transition for fracturing rock masses. Energies, 11(11), 2909.

    Google Scholar 

  • Grau, J., Méndez, V., Tarquis, A. M., Díaz, M. C., & Saa, A. (2006). Comparison of gliding box and box-counting methods in soil image analysis. Geoderma, 134(3–4), 349–359.

    Google Scholar 

  • Harpalani, S., & Mitra, A. (2010). Impact of CO2 injection on flow behavior of coalbed methane reservoirs. Transport in Porous Media, 82(1), 141–156.

    Google Scholar 

  • He, X. Q., Liu, X. F., Nie, B. S., & Song, D. Z. (2017). FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel, 206, 555–563.

    Google Scholar 

  • He, X. Q., Liu, X. F., Song, D. Z., & Nie, B. S. (2019). Effect of microstructure on electrical property of coal surface. Applied Surface Science, 483, 713–720.

    Google Scholar 

  • Hol, S., Spiers, C. J., & Peach, C. J. (2012). Microfracturing of coal due to interaction with CO2 under unconfined conditions. Fuel, 97, 569–584.

    Google Scholar 

  • Hu, G. Z., He, W. R., & Sun, M. (2018). Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole. Journal of Natural Gas Science and Engineering, 60, 164–173.

    Google Scholar 

  • Hu, S. B., Wang, E. Y., & Liu, X. F. (2016). Effective stress of gas-bearing coal and its dual pore damage constitutive model. International Journal of Damage Mechanics, 25(4), 468–490.

    Google Scholar 

  • Ju, W., Jiang, B., Qin, Y., Wu, C. F., Wang, G., Qu, Z. H., & Li, M. (2019). The present-day in-situ stress field within coalbed methane reservoirs, Yuwang Block, Laochang Basin, south China. Marine and Petroleum Geology, 102, 61–73.

    Google Scholar 

  • Katz, B. J., & Arango, I. (2018). Organic porosity: A geochemist’s view of the current state of understanding. Organic Geochemistry, 123, 1–16.

    Google Scholar 

  • Kiani, A., Sakurovs, R., Grigore, M., Keshavarz, A., & White, S. (2019). The use of infrared spectroscopy to determine methane emission rates from coals at atmospheric pressures. Energy & Fuels, 33(1), 238–247.

    Google Scholar 

  • Kong, X. G., Wang, E. Y., Li, S. G., Lin, H. F., Xiao, P., & Zhang, K. Z. (2019). Fractals and chaos characteristics of acoustic emission energy about gas-bearing coal during loaded failure. Fractals, 27(5), 1950072.

    Google Scholar 

  • Kong, X. G., Wang, E. Y., Li, S. G., Lin, H. F., Zhang, Z. B., & Ju, Y. Q. (2020). Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments. Theoretical and Applied Fracture Mechanics, 105, 102395.

    Google Scholar 

  • Li, H. S., Liu, S. Y., Jia, J. G., Wang, F. C., & Guo, C. W. (2020). Numerical simulation of rock-breaking under the impact load of self-excited oscillating pulsed waterjet. Tunnelling and Underground Space Technology, 96, 103179.

    Google Scholar 

  • Li, H., Shi, S. L., Lin, B. Q., Lu, J. X., Lu, Y., Ye, Q., et al. (2019). A fully coupled electromagnetic, heat transfer and multiphase porous media model for microwave heating of coal. Fuel Processing Technology, 189, 49–61.

    Google Scholar 

  • Li, H., Shi, S. L., Lu, J. X., Ye, Q., Li, Y., & Zhu, X. N. (2019). Pore structure and multifractal analysis of coal subjected to microwave heating. Powder Technology, 346, 97–108.

    Google Scholar 

  • Li, X. L., Li, Z. H., Wang, E. Y., Liang, Y. P., Li, B. L., Chen, P., & Liu, Y. J. (2018). Pattern recognition of mine microseismic and blasting events based on wave fractal features. Fractals, 26(3), 1850029.

    Google Scholar 

  • Liu, C., Shi, B., Zhou, J., & Tang, C. S. (2011). Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials. Applied Clay Science, 54, 97–106.

    Google Scholar 

  • Liu, S., Cui, Y. M., Chen, Y. Q., & Guo, C. W. (2019). Numerical research on rock breaking by abrasive water jet-pick under confining pressure. International Journal of Rock Mechanics and Mining Sciences, 120, 41–49.

    Google Scholar 

  • Liu, S. M., Li, X. L., Wang, D. K., Wu, M. Y., Yin, G. Z., & Li, M. H. (2020). Mechanical and acoustic emission characteristics of coal at temperature impact. Natural Resources Research, 9(3), 1755–1772.

    Google Scholar 

  • Liu, X. F., & Nie, B. S. (2016). Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel, 182, 314–322.

    Google Scholar 

  • Liu, X., Nie, B. S., Wang, W. X., Wang, Z. P., & Zhang, L. (2019). The use of AFM in quantitative analysis of pore characteristics in coal and coal-bearing shale. Marine and Petroleum Geology, 105, 331–337.

    Google Scholar 

  • Liu, X. F., Song, D. Z., He, X. Q., Nie, B. S., & Wang, L. K. (2019). Insight into the macromolecular structural differences between hard coal and deformed soft coal. Fuel, 245, 188–197.

    Google Scholar 

  • Liu, X. F., Song, D. Z., He, X. Q., Wang, Z. P., Zeng, M. R., & Deng, K. (2019a). Nanopore structure of deep-burial coals explored by AFM. Fuel, 246, 9–17.

    Google Scholar 

  • Liu, X. F., Song, D. Z., He, X. Q., Wang, Z. P., Zeng, M. R., & Wang, L. K. (2019b). Quantitative analysis of coal nanopore characteristics using atomic force microscopy. Powder Technology, 346, 332–340.

    Google Scholar 

  • Liu, X. F., Wang, Z. P., Song, D. Z., He, X. Q., & Yang, T. (2020). Variations in surface fractal characteristics of coal subjected to liquid CO2 phase change fracturing. International Journal of Energy Research, 44(11), 8740–8753.

    Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79, 848–861.

    Google Scholar 

  • Lu, Y. Y., Ao, X., Tang, J. R., Jia, Y. Z., Zhang, X. W., & Chen, Y. T. (2016). Swelling of shale in supercritical carbon dioxide. Journal of Natural Gas Science and Engineering, 30, 268–275.

    Google Scholar 

  • Ma, J. L., Li, Q., Kühn, M., & Nakaten, N. (2018). Power-to-gas based subsurface energy storage. A review. Renewable and Sustainable Energy Reviews, 97, 478–496.

    Google Scholar 

  • Mastalerz, M., Schimmelmann, A., Drobniak, A., & Chen, Y. Y. (2013). Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 97(10), 1621–1643.

    Google Scholar 

  • Medina, C. R., Mastalerz, M., & Rupp, J. A. (2018). Pore system characterization of Cambrian-Ordovician carbonates using a new mercury porosimetry-based petrofacies classification system: Application to carbon sequestration reservoirs. Greenhouse Gases: Science and Technology, 8(5), 932–953.

    Google Scholar 

  • Mortazavi, A., & Atapour, H. (2018). An experimental study of stress changes induced by reservoir depletion under true triaxial stress loading conditions. Journal of Petroleum Science and Engineering, 171, 1366–1377.

    Google Scholar 

  • Nie, B. S., Liu, X. F., Yang, L. L., Meng, J. Q., & Li, X. C. (2015). Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel, 158, 908–917.

    Google Scholar 

  • Pan, Y., Hui, D., Luo, P. Y., Zhang, Y., Zhang, L., & Sun, L. (2018). Influences of subcritical and supercritical CO2 treatment on the pore structure characteristics of marine and terrestrial shales. Journal of CO2 Utilization, 28, 152–167.

    Google Scholar 

  • Pandey, R., & Harpalani, S. (2018). An imaging and fractal approach towards understanding reservoir scale changes in coal due to bioconversion. Fuel, 230, 282–297.

    Google Scholar 

  • Panesar, D. K., & Francis, J. (2014). Influence of limestone and slag on the pore structure of cement paste based on mercury intrusion porosimetry and water vapour sorption measurements. Construction and Building Materials, 52, 52–58.

    Google Scholar 

  • Perera, M. S. A. (2017). Influences of CO2 injection into deep coal seams: A review. Energy & Fuels, 31(10), 10324–10334.

    Google Scholar 

  • Ranathunga, A. S., Perera, M. S. A., Ranjith, P. G., Zhang, X. G., & Wu, B. (2017). Super-critical carbon dioxide flow behaviour in low rank coal: A meso-scale experimental study. Journal of CO2 Utilization, 20, 1–13.

    Google Scholar 

  • Sakurovs, R., He, L., Melnichenko, Y. B., Radlinski, A. P., Blach, T., Lemmel, H., & Mildner, D. F. R. (2012). Pore size distribution and accessible pore size distribution in bituminous coals. International Journal of Coal Geology, 100, 51–64.

    Google Scholar 

  • Sampath, K. H. S. M., Perera, M. S. A., Ranjith, P. G., Matthai, S. K., & Li, D. Y. (2019). Qualitative and quantitative evaluation of the alteration of micro-fracture characteristics of supercritical CO2-interacted coal. The Journal of Supercritical Fluids, 147, 90–101.

    Google Scholar 

  • Sazali, Y. A., Sazali, W. M. L., Ibrahim, J. M., Dindi, M., Graham, G., & Godeke, S. (2019). Investigation of high temperature, high pressure, scaling and dissolution effects for carbon capture and storage at a high CO2 content carbonate gas field offshore Malaysia. Journal of Petroleum Science and Engineering, 174, 599–606.

    Google Scholar 

  • Service, R. F. (2016). Cost of carbon capture drops, but does anyone want it? Science, 354(6318), 1362–1363.

    Google Scholar 

  • Singh, S. P. (1998). Non-explosive applications of the PCF concept for underground excavation. Tunneling and Underground Space Technology, 13, 305–311.

    Google Scholar 

  • Tan, P., Pang, H. W., Zhang, R. X., Jin, Y., Zhou, Y. C., Kao, J. W., & Fan, M. (2020). Experimental investigation into hydraulic fracture geometry and proppant migration characteristics for southeastern Sichuan deep shale reservoirs. Journal of Petroleum Science and Engineering, 184, 106517.

    Google Scholar 

  • Tripathy, A., Srinivasan, V., & Singh, T. N. (2018). A comparative study on the pore size distribution of different Indian shale gas reservoirs for gas production and potential CO2 sequestration. Energy & Fuels, 32(3), 3322–3334.

    Google Scholar 

  • Vidanovic, N., Ognjanovic, S., Ilincic, N., Ilic, N., & Tokalic, R. (2011). Application of unconventional methods of underground premises construction in coal mines. Technics Technologies Education Management, 6, 861–865.

    Google Scholar 

  • Vishal, V. (2017). In-situ disposal of CO2: Liquid and supercritical CO2 permeability in coal at multiple down-hole stress conditions. Journal of CO2 Utilization, 17, 235–242.

    Google Scholar 

  • Wang, Q. Q., Zhang, D. F., Wang, H. H., Jiang, W. P., Wu, X. P., Yang, J., & Huo, P. L. (2015). Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals: Implications for CO2 sequestration in coal seams. Energy & Fuels, 29(6), 3785–3795.

    Google Scholar 

  • Wei, Q., Li, X. Q., Zhang, J. Z., Zhu, W. W., Lian, W. L., & Sun, K. X. (2019). Full-size pore structure characterization of deep-buried coals and its impact on methane adsorption capacity: A case study of the Shihezi Formation coals from the Panji Deep Area in Huainan Coalfield, Southern North China. Journal of Petroleum Science and Engineering, 173, 975–989.

    Google Scholar 

  • White, C. M., Smith, D. H., Jones, K. L., Goodman, A. L., Jikich, S. A., LaCount, R. B., et al. (2005). Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: A review. Energy & Fuels, 19(3), 659–724.

    Google Scholar 

  • Wilson, M. P., Worrall, F., Davies, R. J., & Almond, S. (2018). Fracking: How far from faults? Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 4(2), 193–199.

    Google Scholar 

  • Xu, J. K., Zhou, R., Song, D. Z., Li, N., Zhang, K., & Xi, D. Y. (2019). Deformation and damage dynamic characteristics of coal–rock materials in deep coal mines. International Journal of Damage Mechanics, 28(1), 58–78.

    Google Scholar 

  • Yang, W. D., Li, G. Z., Ranjith, P. G., & Fang, L. D. (2019). An experimental study of mechanical behavior of brittle rock-like specimens with multi-non-persistent joints under uniaxial compression and damage analysis. International Journal of Damage Mechanics, 28(10), 1580–1604.

    Google Scholar 

  • Yang, X. L., Wen, G. C., Sun, H. T., Li, X. L., Lu, T. K., Dai, L. C., et al. (2019). Environmentally friendly techniques for high gas content thick coal seam stimulation—multi-discharge CO2 fracturing system. Journal of Natural Gas Science and Engineering, 61, 71–82.

    Google Scholar 

  • Yılmaz, O., Bleyer, J., & Molinari, J. F. (2018). Influence of heterogeneities on crack propagation. International Journal of Fracture, 209(1–2), 77–90.

    Google Scholar 

  • Yin, T. T., Liu, D. M., Cai, Y. D., Zhou, Y. F., & Yao, Y. B. (2017). Size distribution and fractal characteristics of coal pores through nuclear magnetic resonance cryoporometry. Energy & Fuels, 31(8), 7746–7757.

    Google Scholar 

  • Yu, K., Ju, Y. W., Qi, Y., Qiao, P., Huang, C., Zhu, H. J., & Feng, H. Y. (2019). Fractal characteristics and heterogeneity of the nanopore structure of marine shale in Southern North China. Minerals, 9(4), 242.

    Google Scholar 

  • Yu, K., Ju, Y. W., Qian, J., Qu, Z. H., Shao, C. J., Yu, K. L., & Shi, Y. (2018). Burial and thermal evolution of coal-bearing strata and its mechanisms in the southern North China Basin since the late Paleozoic. International Journal of Coal Geology, 198, 100–115.

    Google Scholar 

  • Yue, J. W., Wang, Z. F., Chen, J. S., Zheng, M. H., Wang, Q., & Lou, X. F. (2019). Investigation of pore structure characteristics and adsorption characteristics of coals with different destruction types. Adsorption Science & Technology, 37(7–8), 623–648.

    Google Scholar 

  • Zhang, X. G., Gamage, R. P., Perera, M. S. A., Haque, A., & Ranathunga, A. S. (2019). The influence of CO2 saturation time on the coal gas flow: Fractured bituminous coal. Fuel, 240, 153–161.

    Google Scholar 

  • Zhang, X. G., Ranjith, P. G., Li, D. Y., Perera, M. S. A., Ranathunga, A. S., & Zhang, B. N. (2018). CO2 enhanced flow characteristics of naturally-fractured bituminous coals with N2 injection at different reservoir depths. Journal of CO2 Utilization, 28, 393–402.

    Google Scholar 

  • Zhang, Y. H., Lebedev, M., Sarmadivaleh, M., Barifcani, A., & Iglauer, S. (2016). Swelling-induced changes in coal microstructure due to supercritical CO2 injection. Geophysical Research Letters, 43, 9077–9083.

    Google Scholar 

  • Zhou, S. D., Liu, D. M., Cai, Y. D., Yao, Y. B., Che, Y., & Liu, Z. H. (2017). Multi-scale fractal characterizations of lignite, subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry. Journal of Natural Gas Science and Engineering, 44, 338–350.

    Google Scholar 

  • Zhu, H. J., Ju, Y. W., Huang, C., Han, K., Qi, Y., Shi, M. Y., et al. (2019). Pore structure variations across structural deformation of Silurian Longmaxi Shale: An example from the Chuandong Thrust-Fold Belt. Fuel, 241, 914–932.

    Google Scholar 

  • Zhu, H. J., Ju, Y. W., Qi, Y., Huang, C., & Zhang, L. (2018). Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel, 228, 272–289.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 52004042, 51974127, U19B2009) and the State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University) (Grant No. WS2019B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Liu, X., Song, D. et al. Micro-structural Damage to Coal Induced by Liquid CO2 Phase Change Fracturing. Nat Resour Res 30, 1613–1627 (2021). https://doi.org/10.1007/s11053-020-09782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09782-5

Keywords

Navigation