Skip to main content

Advertisement

Log in

Logistic-Based Translation of Orogenic Gold Forming Processes into Mappable Exploration Criteria for Fuzzy Logic Mineral Exploration Targeting in the Kushaka Schist Belt, North-Central Nigeria

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

This paper applied a logistic-based fuzzy logic inference system to integrate critical factors that could control orogenic gold mineralization in part of the Kushaka schist belt, north-central Nigeria to develop a process-based mineral potential mapping (MPM) of the area. The critical factors from geophysical and geological dataset were weighted using logistic functions. The fuzzy logic inference system provides the capability to handle complex geological processes that culminated in orogenic gold mineralization as well as minimizing systemic uncertainties/fuzziness that often plague MPM. The results of this work show that granitic intrusions with fuzzy scores of 0.67–0.90 played a major role in generating high geothermal gradient in the area. Seventy percent of the existing gold mine sites in the area spatially coincide with metasedimentary rocks, having fuzzy scores of 0.7–0.9; this suggests metasedimentary rocks as being responsible for the production of gold fluid and ligands in the area. The evidence of hydrothermal activity, with fuzzy scores of 0.53 and 0.91, confirms the occurrence of mineralization associated with quartz veins and granite rocks. Lithological contacts and faults, having fuzzy scores of 0.60–0.80, presumably contribute to the localization of orogenic gold mineralization in the area. Emerging from the results, favorable zones for primary orogenic gold mineralization in the area occurred predominantly on granite gneiss and quartz veins. The mineral potential map was found consistent with the local geology, structural styles and hydrothermal alteration signatures in the area, and its validation using the existing locations of geochemical anomalies and prediction–area rate curve in the study area showed 75 and 72% agreement, respectively, thus confirming the reliability of the developed mineral potential map for resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

After Woakes et al. (1987)

Figure 2

Modified after NGSA (2009)

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Abedi, M., Mohammadi, R., Nourouzi, G., & Mohammadi, M. M. (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping. Arabian Journal of Geoscience, 9(482), 1–21.

    Google Scholar 

  • Abubakar, Y. I. (2012). An integrated technique in delineating structures: A case study of the Kushaka schist belt Northwestern Nigeria. International Journal of Applied Science and Technology, 2(5), 164–173.

    Google Scholar 

  • Abubakar, Y. I. (2017). Kalangai fault system and gold/ rare metal pegmatite mineralization in the Kushaka schist, northwestern Nigeria. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 3(1), 175–187.

    Google Scholar 

  • Adekoya, J. A. (1991). The geology of banded iron formation in the Precambrian basement complex of Northern Nigeria. Ph.D. thesis, University of Ibadan Nigeria.

  • Adelusi, A. O., Kayode, J. S., & Akinlalu, A. A. (2013). Interpretation of aeromagnetic and electrical resistivity mapping around Iwaraja area, Southwestern Nigeria. Journal of Geology and Mining Research, 5(2), 38–57.

    Google Scholar 

  • Agangi, A., Hofmann, A., Eickmann, B., Marin-Carbonne, J., & Reddy, S. M. (2016). An atmospheric source of S in Mesoarchaean structurally-controlled gold mineralisation of the Barberton Greenstone Belt. Precambrian Research, 285, 10–20.

    Google Scholar 

  • Airo, M. L. (2002). Aeromagnetic and aeroradiometric responses to hydrothermal alteration. Surveys in Geophysics, 23, 273–302.

    Google Scholar 

  • Airo, M. L. (2007). Application of aerogeophysical data for gold exploration: Implications for the central Lapland greenstone belt. Geological Survey of Finland Special Paper, 44, 187–208.

    Google Scholar 

  • Airo, M. L., & Mertanen, S. (2008). Magnetic signatures related to orogenic gold mineralization, Central Lapland Greenstone Belt, Finland. Journal of Applied Geophysics, 64, 14–24.

    Google Scholar 

  • Ajakaiye, D. E., Hall, D. H., Ashiekaa, J. A., & Udensi, E. E. (1991). Magnetic anomalies in the Nigerian continental mass based on aeromagnetic surveys. Tectonophysics, 192(1), 211–230.

    Google Scholar 

  • Ajibade, A. C. (1980). Geotectonic evolution of the Zungeru region, Nigeria. United Kingdom: Ph.D. thesis, University of Wales, Aberystwyth.

  • Ajibade, A. C., Woakes, M., & Rahaman, M. A. (1989). Proterozoic crustal development in the Pan-African regime of Nigeria. In C. A. Kogbe (Ed.), Geology of Nigeria (2nd ed., pp. 57–69). Lagos: Elizabethan Publication Company.

    Google Scholar 

  • Akinlalu, A. A., Adelusi, A. O., Olayanju, G. M., Adaiat, K. N., & Omosuyi, G. O. (2018). Aeromagnetic mapping of basement structures and mineralization characterisation of Ilesa Schist Belt, Southwestern Nigeria. Journal of African Earth Sciences, 138, 383–391.

    Google Scholar 

  • Almasi, A., Jafarirad, A., Keyrollahi, H., Rahimi, M., & Afzal, P. (2014). Evaluation of structural and geological factors in orogenic gold type mineralization in the Kervian area, north-west Iran, using airborne geophysical data. Exploration Geophysics, 45, 261–270.

    Google Scholar 

  • Almasi, A., Jafarirad, A., & Rahimi, M. (2015). Orogenic gold potential mapping using geospatial data integration, region of Saquez, NW of Iran. Bulletin of the Mineral Research and Exploration, 150, 65–76.

    Google Scholar 

  • Almasi, A., Yousefi, M., & Carranza, E. M. (2017). Potential analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2017.11.001.

    Article  Google Scholar 

  • Amigun, J. O., Afolabi, O., & Ako, B. D. (2012a). Application of airborne magnetic data to mineral exploration in the Okene Iron ore Province of Nigeria. International Research Journal of Geology and Mining, 2(6), 132–140.

    Google Scholar 

  • Amigun, J. O., Afolabi, O., & Ako, B. D. (2012b). Euler 3-D deconvolution of analytical signal of magnetic anomalies over Iron ore deposit in Okene, Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 3(4), 711–717.

    Google Scholar 

  • Augustin, J., & Gaboury, D. (2019). Multi-stage and multi-sourced fluid and gold in the formation of orogenic gold deposits in the world-class Mana district of Burkina Faso—Revealed by LA-ICP-MS analysis of pyrites and arsenopyrites. Ore Geology Reviews, 104, 495–521.

    Google Scholar 

  • Augustin, J., Gaboury, D., & Crevier, M. (2016). The world-class Wona-Kona gold deposit, Burkina Faso. Ore Geology Reviews, 78, 667–672.

    Google Scholar 

  • Augustin, J., Gaboury, D., & Crevier, M. (2017). Structural and gold mineralizing evolution of the world-class orogenic Mana District, Burkina Faso: Multiple mineralizing events during 150 million years. Ore Geology Reviews, 91, 981–1012.

    Google Scholar 

  • Awoyemi, M. O., Hammed, O. S., Falade, S. C., Arogundade, A. B., Ajama, O. D., Iwalehin, P. O., et al. (2017). Geophysical investigation of the possible extension of Ifewara fault zone beyond Ilesa area, southwestern Nigeria. Arab Journal of Geoscience. https://doi.org/10.1007/s12517-016-2813-z.

    Article  Google Scholar 

  • Balogun, O. B. (2019). Tectonic and structural analysis of the Migmatite–Gneiss–Quartzite complex of Ilorin area from aeromagnetic data. NRIAG, Journal of Astronomy and Geophysics, 8(1), 22–33. https://doi.org/10.1080/20909977.2019.1615795.

    Article  Google Scholar 

  • Balogun, O. B., Ojo, S. B., & Olorunfemi, M. O. (2016). Characterisation of tectonic lineaments in the central equatorial Atlantic region of Africa using bouguer anomaly gravity data. Ife Journal of Science, 18(4), 931–947.

    Google Scholar 

  • Betts, P. G., & Lister, G. S. (2002). Geodynamically indicated targeting strategy for shale-hosted massive sulfide Pb–Zn–Ag mineralization in the Western Fold Belt, Mt. Isa terrane. Australian Journal of Earth Sciences, 49, 985–1010.

    Google Scholar 

  • Beuche, A., Frojdo, S., Osterholma, P., Martinkauppi, A., & Eden, P. (2014). Fuzzy logic for acid sulfate soil mapping: application to the southern part of the Finnish coastal areas. Geoderma, 226, 21–30.

    Google Scholar 

  • Bierlein, F. P., Groves, D. I., Goldfarb, R. J., & Dube, B. (2006). Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Mineralium Deposita, 41, 107–126.

    Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modeling with GIS. Oxford: Pergamon.

    Google Scholar 

  • Carranza, E. M. (2008). Geochemical anomaly and mineral potential mapping in GIS. Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. M., & Hale, M. (2001). Geologically constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10(2), 125–136.

    Google Scholar 

  • Carranza, E. M., & Hale, M. (2002). Wildcat mapping of gold potential, Baguio district, Philippines. Transactions Institute of Mining and Metallurgy (Applied Earth Science), 111(2), 100–105.

    Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.

    Google Scholar 

  • Cunha, L. O., Dutra, A. C., & Costa, A. B. (2017). Use of radiogenic heat for demarcation of hydrothermal alteration zones in the Pernambuco-Brazil. Journal of Applied Geophysics, 145, 111–123. https://doi.org/10.1016/j.jappgeo.2017.08.004.

    Article  Google Scholar 

  • Czarnota, K., Blewett, R. S., & Goscombe, B. (2010). Predictive mineral discovery in the eastern Yilgarn Craton, Western Australia: An example of district scale targeting of orogenic gold mineral system. Precambrian Research, 183, 356–377.

    Google Scholar 

  • de Quadros, T. P., Koppe, J. C., Strieder, A. J., & Costa, J. L. (2003). Gamma-ray data processing and integration for lode-Au deposits exploration. Natural Resources Research, 12(1), 57–65.

    Google Scholar 

  • Dufrechou, G., Harris, L. B., Corriveau, L., & Antonoff, V. (2015). Regional and local controls on mineralization and pluton emplacement in the Bondy gneiss complex, Grenville Province, Canada interpreted from aeromagnetic and gravity data. Journal of Applied Geophysics, 116, 192–205.

    Google Scholar 

  • Efmov, A. V. (1978). Multiplicative indication for the allocation of endogenous ores by aerogamma-spectrometric data. In: Methods of ore geophysics. Lenigrad, Scientific Production Association of Geophysics (pp. 59–68).

  • Ejepu, J. S., Unuevho, C. I., Ako, T. A., & Abdullahi, S. (2018). Integrated geosciences prospecting for gold mineralization in Kwakuti, North-Central Nigeria. Journal of Geology and Mining Research, 10(7), 81–94. https://doi.org/10.5897/JGMR2018.0296.

    Article  Google Scholar 

  • Ferreira, F. F., de Castro, L. G., Bongiolo, A. S., de Souza, J., & Romeiro, M. T. (2011). Enhancement of the total horizontal gradient of magnetic anomalies using tilt derivatives: Part II—Application to real data (pp. 887–891). SEG Technical Program Expanded Abstracts.

  • Fitches, W. R., Ajibade, A. C., Egbuniwe, I. G., Holt, R. W., & Wright, J. B. (1985). Late Proterozoic schist belts and plutonism in Northwestern Nigeria. Journal of Geological Society London, 142, 319–337.

    Google Scholar 

  • Ford, A., Peters, K. J., Partington, G. A., Blevin, P. L., Downes, P. M., Fitzherbert, J. A., et al. (2019). Translating expressions of intrusion-related mineral systems into mappable spatial proxies for mineral potential mapping: Case studies from the Southern New England Orogen, Australia. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2019.102943.

  • Fu, B., Kendrick, M. A., Fairmaid, A. M., Philips, D., Wilson, C. L., & Mernagh, T. P. (2012). New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contributions to Mineralogy and Petrology, 163, 427–447.

    Google Scholar 

  • Gaafar, I. (2015). Integration of geophysical and geological data for delineation of mineralized zones in Um Naggat area, Central Eastern Desert, Egypt. NRIAG Journal of Astronomy and Geophysics. https://doi.org/10.1016/j.nrjag.2015.04.004.

    Article  Google Scholar 

  • Gaboury, D. (2019). Parameters for the formation of orogenic gold deposits. Applied Earth Sciences. https://doi.org/10.1080/25726838.2019.1583310.

    Article  Google Scholar 

  • Garba, I. (1988). The variety and possible origin of the Nigerian gold mineralization. Journal of African Earth Sciences, 7(7/8), 981–986.

    Google Scholar 

  • Garba, I. (2000). Origin of Pan-African mesothermal gold mineralization at Bin-Yauri, Nigeria. Journal of African Earth Sciences, 31(2), 433–449.

    Google Scholar 

  • Garba, I. (2002). Late Pan-African tectonics and origin of gold mineralization and rare-metal pegmatites in the Kushaka Schist Belt, northwestern Nigeria. Journal of Mining and Geology. https://doi.org/10.4314/jmg.v38i1.18768.

  • Garba, I. (2003). Geochemical characteristics of mesothermal gold mineralization in the Pan-African (600 ± 150 Ma) basement of Nigeria. Applied Earth Science (Transactions of the Institution of Mining and Metallurgy). https://doi.org/10.1179/037174503225003143.

    Article  Google Scholar 

  • Garba, I., & Akande, S. O. (1992). The origin and significance of non-aqueous CO2 fluid inclusions in the auriferous veins of Bin Yauri, northwestern Nigeria. Mineralium Deposita, 27, 249–255.

    Google Scholar 

  • Gilbert, D., & Geldano, A. (1985). A computer programme to perform transformations of gravimetric and aeromagnetic surveys. Computers and Geosciences, 11, 553–588.

    Google Scholar 

  • Goldfarb, R. J., Baker, T., Dube, B., Groves, D. I., Hart, J. R., & Gosselin, P. (2005). Distribution, character and genesis of gold deposits in metamorphic terranes. In J. W. Hedenquist (Ed.), Economic geology 100th anniversary volume (pp. 407–450). Littleton, CO: Economic Geologists.

    Google Scholar 

  • Goldfarb, R. J., & Groves, D. I. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233, 2–26.

    Google Scholar 

  • Groves, D. I. (1993). The crustal continuum model for Late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28, 366–374.

    Google Scholar 

  • Groves, D. I., Goldfarb, R. J., Knox-Robinson, C. M., Ojala, J., Gardoll, S., Yun, G. Y., et al. (2000). Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geology Reviews, 17, 1–38.

    Google Scholar 

  • Groves, D. I., Goldfarb, R. J., & Santosh, M. (2015). The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2015.07.001.

    Article  Google Scholar 

  • Groves, D. I., Santosh, M., Deng, J., Wang, Q., Yang, L., & Zhang, L. (2019). A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita. https://doi.org/10.1007/s00126-019-00877-5.

    Article  Google Scholar 

  • Groves, D. I., Santosh, M., Goldfarb, R. J., & Zhang, L. (2018). Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2018.01.006.

    Article  Google Scholar 

  • Herbert, S., Woldai, T., Carranza, E. M., & Van Ruitenbeek, F. A. (2014). Predictive mapping of potential for orogenic gold in Uganda. Journal of African Earth Sciences, 99, 666–693.

    Google Scholar 

  • Holt, R. W. (1982). The geotectonic evolution of the Anka belt in the Precambrian basement complex of Northwestern Nigeria. Ph.D. thesis, Open University, Milton Keynes.

  • Holt, R. W., Egbuniwe, I. G., Fitches, W. R., & Wright, J. B. (1978). The relationship between low-grade metasedimentary belts, calc-alkaline volcanism and the Pan-African orogeny in Northwestern Nigeria. Geology Runds, 67, 631–646.

    Google Scholar 

  • Hoover, D. B., & Pierce, H. A. (1990). Annotated bibliography of gamma-ray methods applied to gold exploration. U.S. Geological Survey Open-File Report, 90-203.

  • Joly, A., Porwal, A., & McCuaig, T. C. (2012). Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and potential analysis. Ore Geology Reviews, 48, 349–383.

    Google Scholar 

  • Knox-Robinson, C. M. (2000). Vectorial fuzzy logic: A novel technique for enhanced mineral potential with reference to the orogenic gold mineralization potential of the Kalgoorlie Terrane, Western Australia. Australian Journal of Earth Sciences, 47, 929–941.

    Google Scholar 

  • Knox-Robinson, C. M., & Wyborn, L. I. (1997). Towards a holistic exploration strategy: Using geographic systems as a tool to enhance exploration. Australian Journal of Earth Sciences, 44, 453–463.

    Google Scholar 

  • Kolawole, F., Atekwana, E. A., Lao-Davila, D. A., Abdelsalam, M. G., Chindandali, P. R., Salima, J., et al. (2018). Active deformation of Malawi Rift’s North Basin hinge zone modulated by reactivation of pre-existing Precambrian shear zone fabric. Tectonics. https://doi.org/10.1002/2017tc004628.

    Article  Google Scholar 

  • Lisitsin, V. A., Porwal, A., & McCuaig, T. C. (2014). Probabilistic fuzzy logic modeling: Quantifying uncertainties of mineral potential models using Monte Carlo simulations. Mathematical Geosciences. https://doi.org/10.1007/s11004-014-9534-1.

    Article  Google Scholar 

  • Maden, N., & Akaryali, E. (2015). Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralization (eastern pontides, NE turkiye). Journal of Applied Geophysics. https://doi.org/10.1016/j.jappgeo.2015.09.003.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals: form, chance, and dimension. San Francisco: Freeman.

    Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature (updated and augmented edition). New York: Freeman.

    Google Scholar 

  • Mandelbrot, B. B., Passoja, D. E., & Paullay, A. J. (1984). Fractal character of fracture surfaces of metals. Nature, 308(5961), 721–722.

    Google Scholar 

  • McCuaig, T. C., Beresford, S., & Hronsky, J. (2010). Translating the mineral systems approach into an effective targeting system. Ore Geology Reviews, 38, 128–138.

    Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, great basin of Nevada. Natural Resources Research, 10(3), 209–226.

    Google Scholar 

  • Ndousa-Mbarga, T., Fenmoue, A. S., Manguelle-Dicoum, E., & Fairhead, J. D. (2012). Aeromagnetic data interpretation to locate buried faults in south-east Cameroon. Geophysica, 48(1–2), 49–63.

    Google Scholar 

  • Nigerian Geological Survey Agency. (2009). Airborne geophysical survey residual magnetic intensity map of Abuja (sheet 186) area.

  • Nykänen, V., Groves, D. I., Ojala, V. J., Eilu, P., & Gardoll, S. J. (2008). Reconnaissance-scale conceptual fuzzy-logic potential modeling for iron-oxide copper-gold deposits in the Northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55, 25–38.

    Google Scholar 

  • Nykanen, V., Groves, D. I., Ojala, V. J., & Gardoll, S. J. (2008). Combined conceptual/ empirical potential mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55(1), 39–59.

    Google Scholar 

  • Obaje, N. G. (2009). Geology and mineral resources of nigeria. Dordrecht: Springer.

    Google Scholar 

  • Ogezi, A. O. (1977). Geochemistry and geochronology of Basement rocks from Northwestern Nigeria. United Kingdom: Ph.D. thesis, University of Leeds.

  • Oke, S. A., Abimbola, A. F., & Rammlmair, D. (2014). Mineralogical and geochemical characterisation of gold bearing quartz veins and soils in parts of Maru Schist belt area, Northwestern Nigeria. Journal of Geological Research. https://doi.org/10.1155/2014/314214.

    Article  Google Scholar 

  • Oladapo, M. I., Adeoye, O., Adebobuyi, F., Adebobuyi, F. S., Badejo, O., & Ifarajimi, W. (2013). Seismic refraction study of Gurara dam phase II, Northwestern Nigeria. Journal of Geology and Mining Research, 5(11), 239–249. https://doi.org/10.5897/jgmr13.0180.

    Article  Google Scholar 

  • Oladunjoye, M. A., Olayinka, A. I., Alaba, M., & Adabanija, M. A. (2015). Interpretation of high resolution aeromagnetic data for lineaments study and occurrence of Banded Iron Formation in Ogbomoso area, southwestern Nigeria. Journal of African Earth Sciences. https://doi.org/10.1016/j.afrearsci.2015.10.015.

    Article  Google Scholar 

  • Olasehinde, P. I., Ejepu, S. J., & Alabi, A. A. (2013). Fracture detection in a hard rock terrain using radial geoelectric sounding techniques. Water Resources Journal, 23(1, 2), 1–19.

    Google Scholar 

  • Olawuyi, A. K. (2015). Magnetic mapping of a part of Lafiagi (sheet 203), southwestern Nigeria. Unpublished Ph.D. thesis, Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria.

  • Oluyide, P. O. (1988). Structural trends in the Nigerian basement complex. In P. O. Oluyide, W. C. Mbonu, A. E. O. Ogezi, I. G. Egbuniwe, A. C. Ajibade, & A. C. Umeji (Eds.), Precambrian geology of Nigeria (pp. 93–98). Kaduna: Geological Survey of Nigeria.

    Google Scholar 

  • Oyeniyi, T. O., Salami, A. A., & Ojo, S. B. (2016). Magnetic surveying as an aid to geological mapping: A case study from Obafemi Awolowo University campus in Ile-Ife, southwest Nigeria. Ife Journal of Science, 18(2), 331–343.

    Google Scholar 

  • Porwal, A., Carranza, E. M., & Hale, M. (2003). Artificial neural networks for mineral potential mapping. Natural Resources Research, 5(1), 155–171.

    Google Scholar 

  • Raines, G. L., Sawatzky, D. L., & Bonham-Carter, G. F. (2010). Incorporating expert knowledge: New fuzzy logic tools in ArcGIS 10. Esri.

  • Ramadan, T. M., & Abdel Fattah, M. F. (2010). Characterisation of gold mineralization in Garin Hawal area, Kebbi State, NW Nigeria, using remote sensing. The Egyptian Journal of Remote Sensing and Space Sciences, 13, 153–163. https://doi.org/10.1016/j.ejrs.2009.08.001.

    Article  Google Scholar 

  • Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80–91.

    Google Scholar 

  • Selvaraja, V., Caruso, S., Fiorentini, M. L., LaFlamme, C. K., & Bui, T. H. (2017). Atmospheric sulfur in the orogenic gold deposits of the Archaean Yilgarn Craton, Australia. Geology, 45, 691–694.

    Google Scholar 

  • Shives, R. K., Charbonneau, B. W., & Ford, K. L. (1997). The detection of potassic alteration by gamma-ray spectrometry: Recognition of alteration related to mineralization. In A. G. Gubins (Ed.), Proceedings of exploration 97: Fourth decennial international conference on mineral exploration (pp. 741–752). Toronto, Canada.

  • Sillitoe, R. H. (2000). Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. Reviews in Economic Geology, 13, 315–345.

    Google Scholar 

  • Silva, C. E., Silva, A. M., Toledo, C. B., Mol, A. G., Otterman, D. W., & De Souza, S. C. (2012). Mineral potential mapping for orogenic gold deposits in the Rio Maria granite greenstone terrane, southeastern Para State, Brazil. Society of Economic Geology, 107, 1387–1402.

    Google Scholar 

  • Thomas, M. D., & Harris, J. R. (2009). Geological significance of high-resolution aeromagnetic and radiometric data in the area of the Naver and Ste. Marie plutons, Central British Columbia: An example of remote predictive mapping (RPM). Canadian Journal of Remote Sensing, 35(1), S31–S55.

    Google Scholar 

  • Tomkins, A. G. (2010). Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochimica et Cosmochimica Acta, 74, 3246–3259. https://doi.org/10.1016/j.gca.2010.03.003.

    Article  Google Scholar 

  • Tomkins, A. G. (2013). On the source of orogenic gold. Geology, 41, 1255–1256. https://doi.org/10.1130/focus122013.1.

    Article  Google Scholar 

  • Wang, C. (2015). A study of membership functions on Mamdani-Type fuzzy inference systems for industrial decision-making. Theses (M.Sc), Lehigh University. Paper 1665.

  • Winock Mining Nigeria Limited. (2018). Gurara Gold project exploration and development. Retrieved December 19, 2018 on http://www.winockmining.com/gurara-gold-project/.

  • Woakes, M., Rahaman, M. A., & Ajibade, A. C. (1987). Some metallogenic features of the Nigerian Basement. Journal of African Earth Sciences, 6(5), 655–664.

    Google Scholar 

  • Wuyep, E. O., Garba, I., & Onwuala, P. A. (2007). Review of structures, fluid flow and gold deposits in Nigeria. Geological Society of America Abstracts, 39(6), 628.

    Google Scholar 

  • Wyborn, L. I., Heinrich, C. A., & Jaques, A. L. (1994). Australian proterozoic mineral systems: Essential ingredients and mappable criteria (pp. 109–116). Darwin, Australia: Proceedings of the Australasian Institute of Mining and Metallurgy Annual Conference.

  • Yousefi, M., & Carranza, E. M. (2015a). Fuzzification of continuous-value spatial evidence for mineral potential mapping. Computers and Geosciences, 74, 97–109. https://doi.org/10.1016/j.cageo.2014.10.014.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. M. (2015b). Prediction-area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral potential modeling. Computers and Geosciences, 79, 69–81.

    Google Scholar 

  • Yousefi, M., & Carranza, E. M. (2015c). Geometric average of spatial evidence data layers: A GIS- based multi-criteria decision-making approach to mineral potential mapping. Computers and Geosciences, 83, 72–79.

    Google Scholar 

  • Yousefi, M., & Carranza, E. M. (2016). Union score and fuzzy logic mineral potential mapping using discretized and continuous spatial evidence values. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2016.04.019.

    Article  Google Scholar 

  • Yousefi, M., Carranza, E. M., & Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration, 128, 88–96.

    Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral potential mapping. Geochemistry: Exploration Environmental, Analysis, 14, 45–58.

    Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral potential mapping. Journal of Geochemical Exploration, 164, 94–106.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Google Scholar 

  • Zhang, H., Jia, P., Zhang, X., & Wang, Z. (2017). The application of airborne geophysics data for rapid regional geological mapping in Northwestern Angola. Sains Malaysiana, 46(11), 2109–2118. https://doi.org/10.1757/jsm-2017-4611-11.

    Article  Google Scholar 

  • Zhang, N., & Zhou, K. (2015). Mineral potential mapping with weights of evidence and fuzzy logic methods. Journal of Intelligent and Fuzzy Systems, 29, 2639–2651. https://doi.org/10.3233/IFS-151967.

    Article  Google Scholar 

  • Zhong, R., Brugger, J., Tomkins, A. G., Chen, Y., & Li, W. (2015). Fate of gold and base metals during metamorphic devolatilization of a pelite. Geochimica et Cosmochimica Acta, 171, 338–352.

    Google Scholar 

  • Zimmermann, H. (1991). Fuzzy set theory and its applications (2nd ed.). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

Download references

Acknowledgments

The authors appreciate Prof. G. O. Omosuyi, Prof. G. M. Olayanju and Dr. A. A. Akinlalu of the department of Applied Geophysics, Federal University of Technology Akure for some supports. We thank Prof. E.J.M. Carranza, the Editor-in-Chief of Natural Resource Research and two anonymous reviewers for their resourceful comments. The suggestions by the reviewers have greatly improved the quality and structure of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Olumide Sanusi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanusi, S.O., Amigun, J.O. Logistic-Based Translation of Orogenic Gold Forming Processes into Mappable Exploration Criteria for Fuzzy Logic Mineral Exploration Targeting in the Kushaka Schist Belt, North-Central Nigeria. Nat Resour Res 29, 3505–3526 (2020). https://doi.org/10.1007/s11053-020-09689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09689-1

Keywords

Navigation