Skip to main content
Log in

Hydrocarbon Generation, In-Source Conversion of Oil to Gas and Expulsion: Petroleum System Modeling of the Duwi Formation, Gulf of Suez, Egypt

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

A multiple forward 1D modeling approach on four wells in the Abu Rudeis-Sidri oil field has been performed in accordance with the plate tectonics and crustal development of the Gulf of Suez, Egypt. The current work intends to simulate the hydrocarbon generating capability, in-source conversion of oil to gas, expulsion and adsorption (retention) of marine sulfur-rich Duwi kerogen. The integration of log responses and organic geochemistry indicate mature organic-rich intervals that have been confirmed by the 1D model. The rifting phases and its associated thermal cooling have a prominent contribution on the thermal maturation, particularly the Mio-Pliocene event. The elevated basal heat flow associated with the lithosphere thinning due to different rifting phases accelerates the thermal maturation of the high sulfur content of Duwi organic-rich interval. The pre-rift sequences are thermal insulators in contrast to the post-rift sequences of evaporites that can cool the underlying strata. Hydrocarbon generation, gas secondary cracking and expulsion are influenced by the post-rift thermal subsidence (the first and second phases). The kerogen has attained a thermal maturity level to generate liquid hydrocarbon since the Messinian (~ 5.8 Ma) and thermogenic gas secondary cracking since Zanclean (~ 3.57 Ma). The hydrocarbon generation (Early Pliocene) is related to the combination of basin burial (accompanied the first phase post-rift thermal subsidence) and the rift renewal through the Pliocene (Messinian Time Event). The gas generation is related to the second phase post-rift thermal subsidence that is accompanied by the deposition of the Post-Zeit Formation. Most of the hydrocarbons attained peak bulk generation during Pliocene (5.8 Ma), which dominated until expulsion commenced (2.52 Ma). The expulsion onset (Late Pliocene) attained subsequent to gas generation and after rift structural trap formation in Late Oligocene–Early Miocene. The expulsion onset (2.52 Ma) related mainly due to a high transformation ratio of kerogen, compaction and partly because of higher initial values of TOC (4.8%) as compared with its present-day values (3.2%). Applying the sensitivity analysis inferred that the source rock properties (HI and TOC) are not assigned as a controlling factor in the maturation process. The eroded thickness has small influence on the maturation process. In contrast, the excellent correlation (Pearson correlation coefficient = 1) supports that heat flow superimposed on the burial-related maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Abu Al-Atta, M., Issa, I. G., Ahmed, A. M., & Afife, M. M. (2014). Source rock evaluation and organic geochemistry of Belayim Marine Oil Field, Gulf of Suez, Egypt. Egyptian Journal of Petroleum (EGYJP), 23(3), 285–302. https://doi.org/10.1016/j.ejpe.2014.08.005.

    Google Scholar 

  • Afife, M. M., Abu Al-Atta, M., Ahmed, A. M., & Issa, I. G. (2016). Thermal maturity and hydrocarbon generation of the Dawi Formation, Belayim Marine Oil Field, Gulf Of Suez, Egypt: A 1D basin modeling case study. Arabian Journal of Geosciences, 9(5), 1–31. https://doi.org/10.1007/s12517-016-2320-2.

    Google Scholar 

  • Ahmed, A. M., & Afife, M. M. (2018). Hydrocarbon-generating potential of the Eocene Thebes Formation, Gulf of Suez: 1D basin modeling as a supplementary tool for source rock evaluation. Arabian Journal of Geosciences, 11(713), 22. https://doi.org/10.1007/s12517-018-4027-z.

    Google Scholar 

  • Albrecht, P. (1969). Constituents organiques des roches sedimentaires: etude de la diagenese dans un serie sedimentaure epaisse. Dissertation, Strasbourg University, Strasbourg.

  • Al-Husseini, I. M. (2012). Late oligocene–early miocene nukhul sequence, Gulf of Suez and Red Sea. GeoArabia, 17(1), 17–44.

    Google Scholar 

  • Allen, A. P., & Allen, R. J. (1990). Basin analysis: Principles and applications (1st ed.). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Allen, A. P., & Allen, R. J. (2005). Basin analysis: Principles and applications (2nd ed.). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Allen, A. P., & Allen, R. J. (2013). Basin analysis: Principles and applications to petroleum play assessment (3rd ed.). Malaysia: Blackwell Scientific Publications.

    Google Scholar 

  • Alsharhan, A. S. (2003). Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. American Association of Petroleum Geologists Bulletin, 87(1), 143–180.

    Google Scholar 

  • Alsharhan, A. S., & Salah, G. M. (1997a). A common source rock for Egyptian and Saudi hydrocarbons in the Red Sea. American Association of Petroleum Geologists Bulletin, 81, 1640–1659.

    Google Scholar 

  • Alsharhan, A. S., & Salah, G. M. (1997b). Lithostratigraphy, sedimentology and hydrocarbon habitat of the pre-Cenomanian Nubian Sandstone in the Gulf of Suez Oil Province, Egypt. GeoArabia, 2(4), 385–400.

    Google Scholar 

  • Atia, M. H., Ahmed, A. M., & Korrat, I. (2015). Thermal maturation simulation and hydrocarbon generation of the turonian Wata Formation in Ras Budran Oil Field, Gulf of Suez, Egypt. Journal of Environmental Sciences, 44(1), 57–92.

    Google Scholar 

  • Awadalla, A., Hegab, A. O., Ahmed, A. M., & Hassan, S. (2018). Burial and thermal history simulation of the Abu Rudeis-Sidri oil field, Gulf of Suez-Egypt: A 1D basin modeling study. Journal of African Earth Sciences, 138, 86–101. https://doi.org/10.1016/j.jafrearsci.2017.10.009.

    Google Scholar 

  • Baskin, D. K., & Peters, K. E. (1992). Early generation characteristics of a sulfur-rich Monterey kerogen. American Association of Petroleum Geologists Bulletin, 76, 1–13.

    Google Scholar 

  • Beaumont, A. E., Foster, H. N., Vincelette, R. R., Downey, W. M., & Robertson, D. J. (1999). Developing a philosophy of exploration. In A. E. Beaumont & H. N. Foster (Eds.), Treatise of petroleum geology/handbook of petroleum geology: Exploring for oil and gas traps (Vol. 3, pp. 31–34). Tulsa, OK: American Association of Petroleum Geologists.

    Google Scholar 

  • Behar, F., Kressmann, S., Rudkiewicz, L. J., & Vandenbroucke, M. (1992). Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry, 19(1–3), 173–189.

    Google Scholar 

  • Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., & Espitalie, J. (1997). Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26(5–6), 321–339.

    Google Scholar 

  • Behar, F., Vandenbroucke, M., Teermann, C. S., Hatcher, G. P., Leblond, C., & Lerat, O. (1995). Experimental simulation of gas generation from coals and a marine kerogen. Chemical Geology, 126, 247–260.

    Google Scholar 

  • Berner, U., Faber, E., Scheeder, G., & Panten, D. (1995). Primary cracking of algal and landplant kerogens: Kinetic models of isotope variations in methane, ethane and propane. Chemical Geology, 126(3–4), 233–245. https://doi.org/10.1016/0009-2541(95)00120-4.

    Google Scholar 

  • Bostick, N. H. (1973). Time as a factor in thermal metamorphism of phytoclasts (coaly particles). In Congres International de Stratigraphie et de Geologie du Carbonifere, Krefeld, 2328 August 1973 (Vol. Compte Rendu 2, pp. 183–193). Septieme.

  • Bosworth, W., & Durocher, S. (2017). Present-day stress fields of the Gulf of Suez (Egypt) based on exploratory well data: Non-uniform regional extension and its relation to inherited structures and local plate motion. Journal of African Earth Sciences, 136, 136–147. https://doi.org/10.1016/j.jafrearsci.2017.04.025.

    Google Scholar 

  • Bosworth, W., & McClay, K. R. (2001). Structural and stratigraphic evolution of the Gulf of Suez rift, Egypt: A synthesis. Mémoires du Muséum national d’histoire naturelle, 186, 567–606.

    Google Scholar 

  • Burrus, J., Osadetz, K., Wolf, S., Doligez, B., & Visser, K. (1996). A two-dimensional regional basin model of Williston basin hydrocarbon systems. American Association of Petroleum Geologists Bulletin, 80(2), 265–291.

    Google Scholar 

  • Connan, J. (Ed.). (1981). Biological markers in crude oils (Petroleum geology in China). Tulsa: Pennwell.

    Google Scholar 

  • Cooles, G. P., Mackenzie, S. A., & Quigley, M. T. (1986). Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10, 235–245.

    Google Scholar 

  • Di Primio, R., & Horsfield, B. (2006). From petroleum-type organofacies to hydrocarbon phase prediction. American Association of Petroleum Geologists Bulletin, 90(7), 1031–1058.

    Google Scholar 

  • Dieckmann, V., Schenk, H. J., & Horsfield, B. (2000). Assessing the overlap of primary and secondary reactions by closed- versus open-system pyrolysis of marine kerogens. Journal of Analytical and Applied Pyrolysis, 56, 33–46.

    Google Scholar 

  • Dolson, C. J., Shaan, V. M., Matbouly, S., Harwood, C., Rashed, R., & Hammouda, H. (2001). The petroleum potential of Egypt. In W. M. Downey, C. J. Threet, & A. W. Morgan (Eds.), Petroleum proviences of the twenty-first century (Vol. Memoir No. 74, pp. 453–482). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Dow, W. G. (1977). Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, 79–99.

    Google Scholar 

  • Dowdle, L. W., & Cobb, M. W. (1975). Static formation temperature from well logs—an empirical methods. Journal of Petroleum Technology, 27(11), 1326–1330. https://doi.org/10.2118/5036-PA.

    Google Scholar 

  • Eglinton, I. T., Damsté, J. S. S., Kohnen, M. E., & de Leeuw, J. W. (1990). Rapid estimation of the organic sulphur content of kerogens, coals and asphaltenes by pyrolysis-gas chromatography. Fuel, 69(11), 1394–1404.

    Google Scholar 

  • EGPC. (1996). Gulf of Suez Oil Fields, a comprehensive overview. Cairo: Egyptian General Petroleum Corporation.

    Google Scholar 

  • El Atfy, H., Brocke, R., & Uhl, D. (2013). Age and paleoenvironment of the Nukhul Formation, Gulf of Suez, Egypt: Insights from palynology, palynofacies and organic geochemistry. GeoArabia, 18(4), 137–174.

    Google Scholar 

  • El Ayouty, M. K. (1990). Petroleum geology. In R. Said (Ed.), Geology of Egypt (pp. 567–599). Rotterdam: Balkema.

    Google Scholar 

  • El Beialy, S. Y., Mahmoud, M. S., & Ali, A. S. (2005). Insights on the age, climate and depositional environments of the rudeis and kareem formations, GS-78-1 well, Gulf of Suez, Egypt: a palynological approach. Revista Española de Micropaleontología, 37(2), 273–289.

    Google Scholar 

  • El Beialy, Y. S., & Ali, S. A. (2002). Dinoflagellates from the Miocene Rudeis and Kareem formations borehole GS-78-1, Gulf of Suez, Egypt. Journal of African Earth Sciences, 35(2), 235–245.

    Google Scholar 

  • El-Ghali, M., El Khoriby, E., Mansurbeg, H., Morad, S., & Ogle, N. (2013). Distribution of carbonate cements within depositional facies and sequence stratigraphic framework of shoreface and deltaic arenites, Lower Miocene, the Gulf of Suez rift, Egypt. Marine and Petroleum Geology, 45, 267–280.

    Google Scholar 

  • Elzarka, M. H. (1975). Geochemical relations of fluids in Oil Fields of Gulf of Suez, Egypt. American Association of Petroleum Geologists Bulletin, 59(9), 1667–1675.

    Google Scholar 

  • Erdman, J. G. (1975). Time and temperature relations affecting the origin, expulsion and preservation of oil and gas. In 9th world petroleum congress (pp. 139–148).

  • Ertas, D., Kelemen, S. R., & Halsey, T. C. (2006). Petroleum expulsion Part 1. Theory of kerogen swelling in multicomponent solvents. Energy & Fuels, 20, 295–300.

    Google Scholar 

  • Fahmi, A., Attia, A., El-Tokhy, M., Saber, S., & Madkour, A. (2015). Enhance oil recovery by discovering a new potential hydrocarbon from the unconventional reservoir in Abu Rudeis/Sidri Field, Gulf of Suez-Egypt. In Offshore Mediterranean conference and exhibition, 2015: Offshore Mediterranean conference.

  • Gabrielsen, H. R. (2010). The structure and hydrocarbon traps of sedimentary basins. In K. Bjorlykke (Ed.), Petroleum geoscience: From sedimentary environments to rock physics (p. 508). Berlin: Springer.

    Google Scholar 

  • Gandino, A. I. G., & Milad, A. G. (1990). Magnetic interpretation controlled by interactive 3D modelling in the southern Gulf of Suez. In 10th exploration and production conference, Cairo (vol. 1, pp. 740–786). Egyptian General Petroleum Corporation.

  • Ganz, H. (1986). Organisch-und anorganisch-geochemische Untersuchungen an ägyptischen Schwarzschiefer-Phosphoritsequenzen-Methodenentwicklung und genetisches Modell: Reimer.

  • Ganz, H., Kalkreuth, W., Ganz, S., Öner, F., Pearson, M., & Wehner, H. (1990). Infrared analysis—State of the art. Berliner Geowissenshaftliche Abhandlungen, 120, 1011–1026.

    Google Scholar 

  • Ganz, H., & Robinson, V. (1985). Newly developed infrared method for characterizing kerogen type and thermal maturation. In 12th international meeting on organic geochemistry (p. 94).

  • Genedi, E. M. A. M., Ghazala, H. H., & Ahmed, A. M. (2016). Reservoir characterization of the middle miocene Belayim Formation (Nullipore Member) in Ras Fanar Oil Field, Gulf of Suez-Egypt. Egyptian Journal of Applied Geophysics, 15(1), 143–170.

    Google Scholar 

  • Gibbons, M. J., Williams, A. K., Piggott, N., & Williams, G. M. (1983). Petroleum geochemistry of the Southern Santos Basin, offshore Brazil. Journal of the Geological Society, 140, 423–430.

    Google Scholar 

  • Gluyas, J., & Swarbrick, R. (2004). Petroleum geoscience. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Hantschel, T., & Kauerauf, I. A. (2009). Fundamentals of basin and petroleum systems modeling. Berlin: Springer.

    Google Scholar 

  • Higley, D. K. (2014). Thermal maturation of petroleum source rocks in the Anadarko basin province, Colorado, Kansas, Oklahoma, and Texas. In D. K. Higley (Ed.), Petroleum systems and assessment of undiscovered oil and gas in the Anadarko Basin Province, Colorado, Kansas, Oklahoma, and Texas—USGS Province. Digital Data Series DDS–69–EE (Vol. 58). Reston: U.S. Department of the Interior/U.S. Geological Survey

  • Higley, K. D., Lewan, M., Roberts, R. N. L., & Henry, E. M. (2006). Petroleum system modeling capabilities for use in oil and gas resource assessments. In U.S. Geological Survey (pp. 18). Reston, Virginia: U.S. Department of the Interior U.S. Geological Survey.

  • Hoering, T. C., & Abelson, P. H. (1963). Hydrocarbon from kerogen. Carnegie Institute, Washington Year Book, 62, 229–234.

    Google Scholar 

  • Horsfield, B., & Düppenbecker, S. J. (1991). The decomposition of Posidonia shale and Green River shale kerogens using microscale sealed vessel (MSSV) pyrolysis. Journal of Analytical and Applied Pyrolysis, 20, 107–123.

    Google Scholar 

  • Horsfield, B., Schenk, J. H., Mills, N., & Welte, D. (1992). An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir. Organic Geochemistry, 19(1–3), 191–204. https://doi.org/10.1016/0146-6380(92)90036-W.

    Google Scholar 

  • Hughes, G. W., Abdine, S., & Girgis, M. H. (1992). Miocene biofacies development and geological history of the Gulf of Suez, Egypt. Marine and Petroleum Geology, 9(1), 2–28.

    Google Scholar 

  • Hui, T., Zhaoming, W., Zhongyao, X., Xianqing, L., & Xianming, X. (2006). Oil cracking to gases: Kinetic modeling and geological significance. Chinese Science Bulletin, 51(22), 2763–2770. https://doi.org/10.1007/s11434-006-2188-8.

    Google Scholar 

  • Hunt, M. J. (1979). Hydrocarbon studies in deep ocean sediments. In W. E. Baker (Ed.), Symposium on organic geochemistry of deep sea drilling project cores. Princeton, NJ: Princeton Science Press.

    Google Scholar 

  • Hutton, A. C., Kantsler, A. J., Cook, A. C., & McKirdy, D. M. (1980). Organic matter in oil shales. Austuralian Petroleum Exploration Society, 20, 44–67.

    Google Scholar 

  • IHS, E. (2006). Gulf of Suez basin monitor. In E. IHS (Ed.), Basin monitor. IHS Energy.

  • Jackśon, J. K., Burnham, K. A., Braun, L. R., & Knauss, G. K. (1995). Temperature and pressure dependence of n-hexadecane cracking. Organic Geochemistry, 23(10), 941–953. https://doi.org/10.1016/0146-6380(95)00068-2.

    Google Scholar 

  • Jia, J., Liu, Z., Meng, Q., Liu, R., Sun, P., & Chen, Y. (2012). Quantitative evaluation of oil shale based on well log and 3D seismic technique in the Sangliao Basin, North-East Chia. Oil Shale, 29(2), 128–150.

    Google Scholar 

  • Jia, W., Wang, Q., Liu, J., Peng, P., Li, B., & Lu, J. (2014). The effect of oil expulsion or retention on further thermal degradation of kerogen at the high maturity stage: A pyrolysis study of type II kerogen from Pingliang shale, China. Organic Geochemistry, 71, 17–29. https://doi.org/10.1016/j.orggeochem.2014.03.009.

    Google Scholar 

  • Kelemen, S. R., Walters, C. C., Ertas, D., Freund, H., & Curry, D. J. (2006a). Petroleum expulsion Part 3. A model of chemically driven fractionation during expulsion of petroleum from kerogen. Energy & Fuels, 20, 309–319.

    Google Scholar 

  • Kelemen, S. R., Walters, C. C., Ertas, D., Kwiatek, L. M., & Curry, D. J. (2006b). Petroleum expulsion Part 2. Organic matter type and maturity effects on kerogen swelling by solvents and thermodynamic parameters for kerogen from regular solution theory. Energy & Fuels, 20, 301–308.

    Google Scholar 

  • Khavari-Khorasani, G., Dolson, C. J., & Michelsen, J. K. (1998). The factors controlling the abundance and migration of heavy versus light oils, as constrained by data from the Gulf of Suez. Part I. The effect of expelled petroleum composition, PVT properties and petroleum system geometry. Organic Geochemistry, 29, 255–282.

    Google Scholar 

  • Klitzsch, E., & Squyres, C. H. (1990). Paleozoic and Mesozoic geological history of the Northeastern Africa based upon new interpretation of the Nubian Strata. American Association of Petroleum Geologists Bulletin, 74, 1203–1211.

    Google Scholar 

  • Littke, R., Baker, D. R., & Leythaeuser, D. (1988). Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Organic Geochemistry, 13, 549–560.

    Google Scholar 

  • Louis, M. C., & Tissot, B. (1967). Influence de la temperature et da la pression sur la formation de hydrocarbures dans les argiles a kerogene. In Proceedings 7th world petroleum congress, Mexico, (vol. 2, pp. 47–60).

  • Magoon, L. B., & Dow, W. G. (Eds.). (1994). The petroleum system-from source to trap (Vol. 60, American Association of Petroleum Geologists Memoir). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Mann, U., Hantschel, T., Schaefer, G. R., Krooss, B., Laythaeuser, D., Littke, R., et al. (1997). Petroleum migration: mechanisms, pathways, efficiencies and numerical simulations. In H. D. Welte, B. Horsfield, & D. R. Baker (Eds.), Petroleum and basin evolution: Insights form petroleum geochemistry, geology and basin modeling (pp. 403–520). Berlin: Springer.

    Google Scholar 

  • McNab, J. G., Smith, P. V., Jr., & Betts, R. L. (1952). The evolution of petroleum. Engineering Chemistry, 44, 2556–2563.

    Google Scholar 

  • Meshref, W. M., Abu El Karamat, M. S., & El Gindi, M. K. (1988). Exploration concepts for oil in the Gulf of Suez. In 9th exploration and production conference, Cairo (vol. 1, pp. 1–23). Egyptian General Petroleum Corporation.

  • Metwalli, F. I., & Pigott, J. D. (2005). Analysis of petroleum system criticals of the Matruh-Shushan Basin, Western Desert, Egypt. Petroleum Geoscience, 11(2), 157–178.

    Google Scholar 

  • Mostafa, A. E. R. (1985). Oil prospects of Rahmi area, Gulf of Suez-Egypt. Alexandria: Alexandria University.

    Google Scholar 

  • Mostafa, A. R. (1993). Organic geochemistry of source rocks and related crude oils in the Gulf of Suez area, Egypt. Berliner Geowisenschaftliche Abhandlungen, A, 147, 163.

    Google Scholar 

  • Mostafa, A. R., & Ganz, H. (1990). Source rock evaluation of a well in Abu Rudies area, Gulf of Suez. Berliner Geowiss, 120(2), 1002–1040.

    Google Scholar 

  • Mostafa, A. R., Klitzsch, E., Matheis, G., & Ganz, H. (1993). Origin and evaluation of hydrocarbons in the Gulf of Suez basin. In U. Thorweihe & H. Schandelmaier (Eds.), Geoscientific research in northeast Africa (pp. 267–275). Rotterdam: Balkema.

    Google Scholar 

  • Orr, W. L. (1986). Kerogen/asphaltene/sulphur relationship in sulphur-rich Monterey oils. Advances in Organic Geochemistry, 10, 499–516.

    Google Scholar 

  • Orr, W. L., & White, C. M. (1990). Geochemistry of sulfur in fossil fuels. Washington, DC: American Chemical Society.

    Google Scholar 

  • Othman, A., Ahmed, A. M., Korrat, I., & Sherief, R. M. (2013). Thermal maturity evaluation and hydrocarbon generation of carbonate organic rich intervals of Sudr formation, Shoab Ali oilfield, Gulf of Suez, Egypt. Journal of Environmental Sciences, 42(4), 569–605.

    Google Scholar 

  • Palacas, J. G. (1984). Carbonate rocks as source rocks of petroleum: geological and chemical characteristics and oil-source correlations. In Proceedings of the eleventh world petroleum congress, London (vol. 2, pp. 31–43).

  • Palmer, S. E. (1993). Organic geochemistry of organic rich cretaceous carbonates with regard to depostional setting. American Association of Petroleum Geologists Bulletin, 77(2), 339.

    Google Scholar 

  • Passey, R. Q., Greaney, S., Kulla, B. J., Moretti, J. F., & Stroud, D. J. (1989). Well log evaluation of organic rich rocks. In 14th international meeting on organic geochemistry, Paris, 1822 September 1989 (pp. Abstract, vol. 1).

  • Passey, R. Q., Greaney, S., Kulla, B. J., Moretti, J. F., & Stroud, D. J. (1990). A practical model for organic richness from porosity and resistivity logs. American Association of Petroleum Geologists Bulletin, 74(1), 1777–1794.

    Google Scholar 

  • Peijs, M. M. A. J., Bevan, G. T., & Piombino, T. J. (2012). The Gulf of Suez rift basin. In G. D. Roberts & W. A. Bally (Eds.), Regional geology and tectonics: Phanerozoic rift systems and sedimentary basins (1st ed., pp. 164–194). Amsterdam: Elsevier.

    Google Scholar 

  • Pepper, S. A., & Corvi, J. P. (1995a). Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology, 12(3), 291–319.

    Google Scholar 

  • Pepper, S. A., & Corvi, J. P. (1995b). Simple kinetic models of petroleum formation. Part III: Modeliling an open system. Marine and Petroleum Geology, 12(4), 417–452.

    Google Scholar 

  • Pepper, S. A., & Dodd, A. T. (1995). Simple kinetics models of petroleum formation. Part II: oil-gas cracking. Marine and Petroleum Geology, 12(3), 321–340.

    Google Scholar 

  • Peters, E. K., Walters, C. C., & Moldowan, M. J. (2005). The biomarker guide (2nd ed., Vol. I: Biomarkers and Isotopes in the Environment and Human History). Cambridge: Cambridge University Press.

    Google Scholar 

  • Philippi, G. T. (1965). On the depth, time and mechanism of petroleum generation. Geochimica et Cosmochimica Acta, 29, 1021–1049.

    Google Scholar 

  • Plaziat, J.-C., Montenat, C., Barrier, P., Janin, M.-C., Orszag-Sperber, F., & Philobbos, E. (1998). Stratigraphy of the Egyptian syn-rift deposits: Correlations between axial and peripheral sequences of the north-western Red Sea and Gulf of Suez and their relations with tectonics and eustacy. In H. B. Purser & J. W. D. Bosence (Eds.), Sedimentation and tectonics in rift basins: Red Sea-Gulf of Aden (1st ed., pp. 211–222). Dordrecht: Springer-Science+Business Media, B.V.

    Google Scholar 

  • Pocknall, D. T., Krebs, W. N., Tawfik, E., & Ahmed, A. A. (1999). Pliocene climate and depositional environments, Gulf of Suez, Egypt: Evidence from palynology and diatoms. In American Association Stratigraphic Palynologists Foundation, The Pliocene: Time of change (pp. 163–171).

  • Poelchau, H. S., Baker, D. R., Hantschel, T., Horsfield, B., & Wygrala, B. P. (1997). Basin simulation and the design of the conceptual basin model. In H. D. Welte, B. Horsfield, & D. R. Baker (Eds.), Petroleum and basin evolution: Insights form petroleum geochemistry, geology and basin modeling (p. 535). Berlin: Springer.

    Google Scholar 

  • Quigley, M. T., & Mackenzie, A. (1988). The temperatures of oil and gas formation in the subsurface. Nature, 333, 549–552.

    Google Scholar 

  • Richardson, M., & Arthur, A. (1988). The Gulf of Suez, northern Red Sea Neogene rift: A quantitative basin analysis. Marine and Petroleum Geology, 5, 247–270.

    Google Scholar 

  • Ritter, U. (2003). Solubility of petroleum compounds in kerogen: Implications for petroleum expulsion. Organic Geochemistry, 34, 319–326.

    Google Scholar 

  • Sandvik, E. I., Young, A., & Curry, D. J. (1992). Expulsion form hydrocarbon sources: The role of organic absorption. Organic Geochemistry, 19, 77–87.

    Google Scholar 

  • Schenk, J. H., Di Primio, R., & Horsfield, B. (1997). The conversion of oil into gas in petroleum reservoirs. Part 1: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Organic Geochemistry, 26(7–8), 467–481. https://doi.org/10.1016/S0146-6380(97)00024-7.

    Google Scholar 

  • Schimmelmann, A., Sessions, A. L., & Mastalerz, M. (2006). Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Annual Review of Earth and Planetary Sciences, 34, 501–533.

    Google Scholar 

  • Schutz, K. I. (1994). Structure and stratigraphy of the Gulf of Suez, Egypt. In M. S. London (Ed.), Interior rift basins (Vol. Memoir No. 59, pp. 57–96). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Selley, C. R. (2000). Applied sedimentology (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Smagala, T. M., Brown, A. C., & Nydedgger, L. G. (1984). Log-derived indicator of thermal maturity, Niobrara Formation, Denver Basin, Colorada, Nebrask, Wyoming. In Hydrocarbon source rocks of the greater rocky mountain region (pp. 355–364). Rocky Mountain Association of Geologists.

  • Soliman, A., Ćorić, S., Head, M. J., Piller, W. E., & El Beialy, Y. S. (2012). Lower and Middle Miocene biostratigraphy, Gulf of Suez, Egypt based on dinoflagellate cysts and calcareous nannofossils. Palynology, 36(1), 38–79.

    Google Scholar 

  • Sweeney, J. J., & Burnham, K. A. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74(10), 1559–1570.

    Google Scholar 

  • Tannenbaum, E., & Aizenshtat, Z. (1985). Formation of immature asphalt from organic-rich carbonate rocks. I Geochemical correlation. Organic Geochemistry, 8, 181–192.

    Google Scholar 

  • Teichmüller, R., Teichmüller, M., & Bartenstein, H. (1971). Umwandlung der organischen substanz in dach des Bramschen Massive. Fortschritte in der Geologie von Rheinland und Westfalen, 18, 501–538.

    Google Scholar 

  • Thomas, M. M., & Clouse, J. A. (1990). Primary migration by diffusion through kerogen: II. Hydrocarbon diffusivities in kerogen. Geochimica et Cosmochimica Acta, 54, 2775–2779.

    Google Scholar 

  • Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (2nd ed.). New York: Springer.

    Google Scholar 

  • Ungerer, P. (1990). State of the art research in kinetic modeling of oil formaion and expulsion. Organic Geochemistry, 16(1–3), 1–25.

    Google Scholar 

  • Ungerer, P., Burrus, J., Doligez, B., Chenet, P., & Bessis, F. (1990). Basin evaluation by integrated two-dimensional modelling of heat transfer, fluid flow, hydrocarbon generation, and migration. American Association of Petroleum Geologists Bulletin, 74(3), 309–335.

    Google Scholar 

  • Vasseyovich, N. B., Korchagina, Y. I., Lopatin, N. V., & Chernyshev, V. V. (1970). Principle phase of oil formation. International Geology Review, 12, 1276–1296.

    Google Scholar 

  • Waples, D. W. (1984). Thermal models for oil generation. In J. Brooks & H. D. Welte (Eds.), Advances in petroleum geochemistry (Vol. 1, pp. 8–67). London: Academic Press.

    Google Scholar 

  • Wei, Z. F., Zou, Y. R., Cai, Y. L., Wang, L., Luo, X. R., & Peng, P. A. (2012). Kinetics of oil group-type generation and expulsion: an integrated application to Dongying depression, Bohai Bay Basin, China. Organic Geochemistry, 52, 1–12.

    Google Scholar 

  • Welte, H. D., & Yükler, M. (1981). Petroleum origin and accummulation in basin evolution—A quantitative model. American Association of Petroleum Geologists Bulletin, 65, 1387–1396.

    Google Scholar 

  • Wescott, W. A., Krebs, W. N., Dolson, J. C., Ramzy, M., Karamat, S. A., & Moustafa, T. (1997). Chronostratigraphy, sedimentary facies, and architecture of tectono-stratigraphic sequences: An integrated approach to rift basin exploration, Gulf of Suez, Egypt. In 18th annual research conference, shallow marine and non-marine reservoirs (pp. 377–399). Gulf coast section SEPM foundation.

  • Wygrala, B. P. (1989). Integrated study of an oil field in the southern Po basin, northern Italy. Dissertation, University of Köln, Köln.

  • Zahra, S. H., & Nakhla, A. (2015). Deducing the subsurface geological conditions and structural framework of the NE Gulf of Suez area, using 2D and 3D seismic data. NRIAG Journal of Astronomy and Geophysics, 4(1), 64–85.

    Google Scholar 

  • Zahra, S. H., & Nakhla, A. (2016). Structural interpretation of seismic data of Abu Rudeis-Sidri area, northern Central Gulf of Suez, Egypt. NRIAG Journal of Astronomy and Geophysics, 5(2), 435–450.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Egyptian General Petroleum Corporation (EGPC) and Belayim Oil Company (Petrobel) for providing the materials, reports and the digital logs. The authors also acknowledge the Schlumberger Company for giving the access of PetroMod® software applications. The authors thank Dr. Haytham El Atfy for fruitful discussion that lead to a better understanding of the basin geology. The article has profited from discussion with Dr. Oluwaseun Adejuwon Fadipe and Schlumberger SIS segment team members. The authors also thank the editor in chief and anonymous reviewers, whose comments and suggestions have helped to significantly improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.A., Hegab, O.A., Awadalla, A.S. et al. Hydrocarbon Generation, In-Source Conversion of Oil to Gas and Expulsion: Petroleum System Modeling of the Duwi Formation, Gulf of Suez, Egypt. Nat Resour Res 28, 1547–1573 (2019). https://doi.org/10.1007/s11053-019-09458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09458-9

Keywords

Navigation