Skip to main content
Log in

Enhancing graphitization and mesoporosity by cobalt in activated carbons obtained from peach stone

  • Original research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Activated carbon (AC) is a common material of choice in catalysis, as it is a suitable support material for many catalytic reactions. In this work, the effect of cobalt nanoparticles on activated carbon derived from a biomass waste, peach stone, is reported. The presence of cobalt during heat treatments at 900 °C under reductive (H2) and inert (He) atmospheres resulted in the appearance of an intense 2D band in the Raman spectra, indicating a high degree of graphitization. Temperature-programmed reduction and desorption experiments were conducted to evaluate the activation reactions. Quenched solid density functional theory (QSDFT) analysis using N2 adsorption data revealed that cobalt increased pore development in the samples, regardless of the atmosphere (reductive or inert) used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Xu F, Si XJ, Wang XN, Kou HD, Chen DM, Liu CS, Du M (2018) A high-activity cobalt-based MOF catalyst for [2 + 2 + 2] cycloaddition of diynes and alkynes: insights into alkyne affinity and selectivity control†, RSC Adv 8 4895–4899. https://doi.org/10.1039/c7ra12136a

  2. Phillips CE (2012) Cobalt MOF-5: a novel catalyst for CO2 conversion to carbonates. Electronic Theses and Dissertations. Paper 1134, University of Louisville. https://doi.org/10.18297/etd/1134

  3. Butova VV, Polyakov VA, Erofeeva EA, Rusalev YV, Gritsai MA, Ozhogin IV, Borodkin GS, Kirsanova DY, Gadzhimagomedova ZM, Guda AA, Soldatov AV (2022) Cobalt nanoparticles embedded in porous N-doped carbon support as a superior catalyst for the p-nitrophenol reduction. Appl Surf Sci 592:153292. https://doi.org/10.1016/j.apsusc.2022.153292

    Article  CAS  Google Scholar 

  4. Shukla PR, Wang S, Sun H, Ang HM, Tadé M (2010) Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl Catal B Environ 100:529–534. https://doi.org/10.1016/j.apcatb.2010.09.006

    Article  CAS  Google Scholar 

  5. Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chemie Int Ed 55:10800–10805. https://doi.org/10.1002/anie.201604802

    Article  CAS  Google Scholar 

  6. Wang Z, Sun Z, Li Q, Zhou M, Liang Q, Li Z, Sun D (2020) Selective oxidation of styrene to benzaldehyde by cobalt phthalocyanine-multi-walled carbon nanotube composites. Solid State Sci 101:106122. https://doi.org/10.1016/j.solidstatesciences.2020.106122

    Article  CAS  Google Scholar 

  7. Nguyen TX, Vuong OKT, Dang NTT, Vuong AK, Nguyen LV, Nguyen HNT, Nguyen TQ, Van Nguyen V (2022) Solvothermal synthesis of high-performance magnetic cobalt nanowires and bonded anisotropic magnets prepared thereof. J Nanoparticle Res 24:209. https://doi.org/10.1007/s11051-022-05586-1

    Article  CAS  Google Scholar 

  8. Chen F, Sahoo B, Kreyenschulte C, Lund H, Zeng M, He L, Junge K, Beller M (2017) Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chem Sci 8:6239–6246. https://doi.org/10.1039/c7sc02062g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Cao C, Liu J, Shi Y, Si R, Gu L, Song W (2019) Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci China Mater 62:1306–1314. https://doi.org/10.1007/s40843-019-9426-x

    Article  CAS  Google Scholar 

  10. Büschelberger P, Reyes-Rodriguez E, Schöttle C, Treptow J, Feldmann C, Jacobi Von Wangelin A, Wolf R (2018) Recyclable cobalt(0) nanoparticle catalysts for hydrogenations, Catal. Sci Technol 8:2648–2653. https://doi.org/10.1039/c8cy00595h

    Article  CAS  Google Scholar 

  11. Zhang G, Su A, Du Y, Qu J, Xu Y (2014) Catalytic performance of activated carbon supported cobalt catalyst for CO 2 reforming of CH 4. J Colloid Interface Sci 433:149–155. https://doi.org/10.1016/j.jcis.2014.06.038

    Article  CAS  PubMed  Google Scholar 

  12. Westerhaus FA, Jagadeesh RV, Wienhöfer G, Pohl M-M, Radnik J, Surkus A-E, Rabeah J, Junge K, Junge H, Nielsen M, Brückner A, Beller M (2013) Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat Chem 5:537–543. https://doi.org/10.1038/nchem.1645

    Article  CAS  PubMed  Google Scholar 

  13. Zhao W, Zhu M, Dai B (2017) Cobalt-nitrogen-activated carbon as catalyst in acetylene hydrochlorination. Catal Commun 98:22–25. https://doi.org/10.1016/j.catcom.2017.04.049

    Article  CAS  Google Scholar 

  14. Hoekstra J, Beale AM, Soulimani F, Versluijs-Helder M, van de Kleut D, Koelewijn JM, Geus JW, Jenneskens LW (2016) The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose: Magnetically separable graphitic carbon bodies for catalysis and remediation. Carbon N Y 107:248–260. https://doi.org/10.1016/j.carbon.2016.05.065

    Article  CAS  Google Scholar 

  15. Charon E, Rouzaud J-N, Aléon J (2014) Graphitization at low temperatures (600–1200°C) in the presence of iron implications in planetology. Carbon N Y 66:178–190. https://doi.org/10.1016/j.carbon.2013.08.056

    Article  CAS  Google Scholar 

  16. Yan Q, Li J, Zhang J, Cai Z (2018) Thermal decomposition of kraft lignin under gas atmospheres of argon, hydrogen, and carbon dioxide, polymers (Basel) 10 729. https://doi.org/10.3390/polym10070729

  17. Sajitha EP, Prasad V, Subramanyam SV, Eto S, Takai K, Enoki T (2004) Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon. Carbon N Y 42:2815–2820. https://doi.org/10.1016/j.carbon.2004.06.027

    Article  CAS  Google Scholar 

  18. Schettino MA, Freitas JCC, Morigaki MK, Nunes E, Cunha AG, Passamani EC, Emmerich FG (2010) High-temperature XRD study of thermally induced structural and chemical changes in iron oxide nanoparticles embedded in porous carbons. J Nanoparticle Res 12:3097–3103. https://doi.org/10.1007/s11051-010-9905-6

    Article  CAS  Google Scholar 

  19. Gonçalves GR, Schettino MA, Morigaki MK, Nunes E, Cunha AG, Emmerich FG, Passamani EC, Baggio-Saitovitch E, Freitas JCC (2015) Synthesis of nanostructured iron oxides dispersed in carbon materials and in situ XRD study of the changes caused by thermal treatment. J Nanoparticle Res 17. https://doi.org/10.1007/s11051-015-3092-4

  20. Zhang Y, Shen B, Sajjad Ahmad M, Zhou W, Khalid RR, Ibrahim M, Bokhari A (2023) A three-dimensional active biochar for sintering in steel industry and remove methylene blue by synergistic activation of H3PO4 and ZnCl2. Fuel 336 127079. https://doi.org/10.1016/j.fuel.2022.127079

  21. Oliveira LCA, Rios RVRA, Fabris JD, Garg V, Sapag K, Lago RM (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon N Y 40:2177–2183. https://doi.org/10.1016/S0008-6223(02)00076-3

    Article  CAS  Google Scholar 

  22. Chen W, Parette R, Zou J, Cannon FS, Dempsey BA (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858. https://doi.org/10.1016/j.watres.2007.01.052

    Article  CAS  PubMed  Google Scholar 

  23. Fierro V, Muñiz G, Gonzalez-Sánchez G, Ballinas ML, Celzard A (2009) Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. J Hazard Mater 168:430–437. https://doi.org/10.1016/j.jhazmat.2009.02.055

    Article  CAS  PubMed  Google Scholar 

  24. Villora-Picó JJ, Campello-Gómez I, Serrano-Ruiz JC, Pastor-Blas MM, Sepúlveda-Escribano A, Ramos-Fernández EV (2021) Hydrogenation of 4-nitrochlorobenzene catalysed by cobalt nanoparticles supported on nitrogen-doped activated carbon, Catal. Sci Technol 11:3845–3854. https://doi.org/10.1039/D1CY00140J

    Article  Google Scholar 

  25. Cruz OF, Campello-Gómez I, Casco ME, Serafin J, Silvestre-Albero J, Martínez-Escandell M, Hotza D, Rambo CR (2023) Enhanced CO2 capture by cupuassu shell-derived activated carbon with high microporous volume. Carbon Lett 33:727–735. https://doi.org/10.1007/s42823-022-00454-3

    Article  Google Scholar 

  26. Serafin J, Ouzzine M, Cruz OF, Sreńscek-Nazzal J, Campello Gómez I, Azar F-Z, Rey Mafull CA, Hotza D, Rambo CR (2021) Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Manag 136:273–282. https://doi.org/10.1016/j.wasman.2021.10.025

    Article  CAS  PubMed  Google Scholar 

  27. Cruz OF, Gómez IC, Escandell MM, Rambo CR, Silvestre-Albero J (2022) Activated carbon from polyurethane residues as molecular sieves for kinetic adsorption/separation of CO2/CH4. Colloids Surfaces A Physicochem Eng Asp 652:129882. https://doi.org/10.1016/j.colsurfa.2022.129882

    Article  CAS  Google Scholar 

  28. Saratale RG, Sivapathan SS, Jung WJ, Kim HY, Saratale GD, Kim DS (2016) Preparation of activated carbons from peach stone by H 4 P 2 O 7 activation and its application for the removal of Acid Red 18 and dye containing wastewater. J Environ Sci Heal Part A 51:164–177. https://doi.org/10.1080/10934529.2015.1087747

    Article  CAS  Google Scholar 

  29. Khemmari F, Benrachedi K (2020) Valorization of peach stones to high efficient activated carbon: synthesis, characterization, and application for Cr(VI) removal from aqueous medium, Energy Sources. Part A Recover Util Environ Eff 42:688–699. https://doi.org/10.1080/15567036.2019.1598519

    Article  CAS  Google Scholar 

  30. Arroyo-Gómez JJ, Villarroel-Rocha D, de Freitas-Araújo KC, Martínez-Huitle CA, Sapag K (2018) Applicability of activated carbon obtained from peach stone as an electrochemical sensor for detecting caffeine. J Electroanal Chem 822:171–176. https://doi.org/10.1016/j.jelechem.2018.05.028

    Article  CAS  Google Scholar 

  31. Kierzek K, Gryglewicz G (2020) Activated carbons and their evaluation in electric double layer capacitors. Molecules 25:4255. https://doi.org/10.3390/molecules25184255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsoncheva T, Mileva A, Tsyntsarski B, Paneva D, Spassova I, Kovacheva D, Velinov N, Karashanova D, Georgieva B, Petrov N (2018) Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass Bioenerg 109:135–146. https://doi.org/10.1016/j.biombioe.2017.12.022

    Article  CAS  Google Scholar 

  33. Stoycheva I, Tsoncheva T, Tsyntsarski B, Petrova B, Georgiev G, Sarbu A, Radu A, Sandu T (2020) Biomass-based nanoporous carbon as catalyst support for production of hydrogen by methanol degradation. Bulg Chem Commun 52:316–319. https://doi.org/10.34049/bcc.52.2.BCS6

    Article  Google Scholar 

  34. Lazzarini A, Piovano A, Pellegrini R, Agostini G, Rudić S, Lamberti C, Groppo E (2016) Graphitization of activated carbons: a molecular-level investigation by INS, DRIFT, XRD and Raman techniques. Phys Procedia 85:20–26. https://doi.org/10.1016/j.phpro.2016.11.076

    Article  CAS  Google Scholar 

  35. Parent P, Laffon C, Marhaba I, Ferry D, Regier TZ, Ortega IK, Chazallon B, Carpentier Y, Focsa C (2016) Nanoscale characterization of aircraft soot: a high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study. Carbon N Y 101:86–100. https://doi.org/10.1016/j.carbon.2016.01.040

    Article  CAS  Google Scholar 

  36. Gomes Ferreira de Paula F, Campello-Gómez I, Ortega PFR, Rodríguez-Reinoso F, Martínez-Escandell M, Silvestre-Albero J (2019) Structural flexibility in activated carbon materials prepared under harsh activation conditions. Materials (Basel) 12 1988. https://doi.org/10.3390/ma12121988

  37. Girgis BS, Temerk YM, Gadelrab MM, Abdullah ID (2007) X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon Lett 8:95–100. https://doi.org/10.5714/cl.2007.8.2.095

    Article  Google Scholar 

  38. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  39. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  40. Hodkiewicz J (2010) Characterizing graphene with Raman spectroscopy, Thermo Sci. Application note: 51946. https://doi.org/10.1371/journal.pcbi.1002542

  41. Komissarov I, Kovalchuk NG, Kolesov EA, Tivanov MS, Korolik OV, Mazanik AV, Shaman YP, Basaev AS, Labunov VA, Prischepa SL, Kargin NI, Ryzhuk RV, Shostachenko SA (2015) Micro Raman investigation of graphene synthesized by atmospheric pressure CVD on copper foil from Decane. Phys Procedia 72:450–454. https://doi.org/10.1016/j.phpro.2015.09.091

    Article  CAS  Google Scholar 

  42. Lin Y-H, Yang C-Y, Lin S-F, Lin G-R (2015) Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of erbium-doped fiber lasers. Opt Mater Express 5:236. https://doi.org/10.1364/OME.5.000236

    Article  CAS  Google Scholar 

  43. Sharma V, Uy D, Gangopadhyay A, O’Neill A, Paxton WA, Sammut A, Ford MA, Aswath PB (2016) Structure and chemistry of crankcase and exhaust soot extracted from diesel engines. Carbon N Y 103:327–338. https://doi.org/10.1016/j.carbon.2016.03.024

    Article  CAS  Google Scholar 

  44. Waridel P, Hobby K, Major HJ, Wolfender J, Waridel P, Ndjoko K, Hobby KR, Major HJ, Hostettmann K, Wolfender L et al (2000) Evaluation of Q-TOF- MS / MS and multiple stage IT-MSn for the dereplication of flavonoids and related compounds in crude plant extracts . Analusis Dossier s Evaluation of Q-TOF-MS / MS and multiple stage IT-MS n for the derepl. https://doi.org/10.1051/analusis

  45. Pawlyta M, Rouzaud J-N, Duber S (2015) Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural information. Carbon N Y 84:479–490. https://doi.org/10.1016/j.carbon.2014.12.030

    Article  CAS  Google Scholar 

  46. Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393. https://doi.org/10.1557/JMR.1989.0385

    Article  CAS  Google Scholar 

  47. Cordoba M, Miranda C, Lederhos C, Coloma-Pascual F, Ardila A, Fuentes G, Pouilloux Y, Ramírez A (2017) Catalytic performance of Co3O4 on different activated carbon supports in the benzyl alcohol oxidation. Catalysts 7:384. https://doi.org/10.3390/catal7120384

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from MINECO (Spain) (PID2022-142960OB-C21) and H2020 (MSCA-RISE-2016/NanoMed Project). Financial support of the National Council for Scientific and Technological Development (CNPq-Brazil) is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

I.C.G.: conceptualization, investigation, writing-original draft preparation, methodology. O.F.C.J.: conceptualization, investigation, methodology, writing-review and editing. C.R.R.: validation, visualization, writing-reviewing and editing. E.V.R.-F.: funding acquisition, supervision, writing-review and editing. A.S.-E.: writing-review and editing, funding acquisition, project administration.

Corresponding author

Correspondence to Carlos R. Rambo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 655 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campello-Gómez, I., Cruz, O.F., Rambo, C.R. et al. Enhancing graphitization and mesoporosity by cobalt in activated carbons obtained from peach stone. J Nanopart Res 26, 81 (2024). https://doi.org/10.1007/s11051-024-05999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05999-0

Keywords

Navigation