Skip to main content
Log in

The role of isomeric alkyl chains of polymer donors on charge-transfer processes in non-fullerene organic photovoltaics: a theoretical investigation

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

To investigate the effects of polymer donors with isomeric alkyl chains on the interfacial charge-transfer (CT) processes, the rates of exciton dissociation (kED) and charge recombination (kCR) have been calculated for complexes PM6/Y6 and PM6i/Y6, where isomer PM6i was designed by shifting the side chains in the electron-withdrawing units to the thiophene-bridges based on PM6. For complex PM6/Y6, kED of PM6 and Y6 exciton are calculated to be 1010–1012 s−1 and 1012–1013 s−1, and kCR is 1011–1012 s−1 for recombination of the lowest CT (CT0) excitons into the lowest triplet states of Y6, which are consistent with the experimental results. When going to complex PM6i/Y6, kED of PM6i exciton is higher than that of PM6 exciton, and of Y6 exciton is decreased to 1011–1012 s−1, but kCR is decreased to 1010–1011 s−1. The calculated results reveal that isomeric alkyl chains of polymer donors can enhance the polymer exciton dissociation and suppress the charge-recombination processes, underlining the important role of isomeric alkyl chains in design of polymer donors for high performance non-fullerene organic photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Liu K, Jiang Y, Liu F et al (2023) Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv Mater 35:2300363

    Article  CAS  Google Scholar 

  2. Zhu L, Zhang M, Xu J et al (2033) Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater 21 656–663

  3. Wei Y, Chen Z, Lu G et al (2022) Binary Organic solar cells breaking 19% via manipulating the vertical component distribution. Adv Mater 34:2204718

    Article  CAS  Google Scholar 

  4. Sun R, Wu Y, Yang X et al (2022) Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv Mater 34:2110147

    Article  CAS  Google Scholar 

  5. Cui Y, Xu Y, Yao H et al (2021) Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater 33:2102420

    Article  CAS  Google Scholar 

  6. Tokmoldin N, Sun B, Moruzzi F et al (2023) Elucidating how low energy offset matters to performance of nonfullerene acceptor-based solar cells. ACS Energy Lett 8:2552–2560

    Article  CAS  Google Scholar 

  7. Sun B, Tokmoldin N, Alqahtani O et al (2023) Toward more efficient organic solar cells: a detailed study of loss pathway and its impact on overall device performance in low-offset organic solar cells. Adv Energy Mater 13:2300980

    Article  CAS  Google Scholar 

  8. Zhu E, Fu L, Lu Y et al (2022) NIR-absorbing electron acceptor based on a selenium-heterocyclic core attaching to phenylalkyl side chains for polymer solar cells with 17.3% efficiency. ACS Appl Mater Interfaces 14:7082–7092

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Jiang Y, Jin K et al (2020) 18% Efficiency organic solar cells. Sci Bull 65:272–275

    Article  CAS  Google Scholar 

  10. Karuthedath S, Gorenflot J, Firdaus Y et al (2021) Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat Mater 20:378–384

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Zhang Q, Yu J et al (2022) Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nat Mater 13:2046

    CAS  Google Scholar 

  12. Yuan J, Zhang Y, Zhou L et al (2019) Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3:1140–1151

    Article  CAS  Google Scholar 

  13. Li Q, Wang R, Yu T et al (2023) Long-range charge separation enabled by intramoiety delocalized excitations in copolymer donors in organic photovoltaic blends. J Phys Chem Lett 14:7498–7506

    Article  CAS  PubMed  Google Scholar 

  14. Zhu L, Zhang J, Guo Y et al (2021) Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar Cells. Angew Chem Int Ed 60:15348–15353

    Article  CAS  Google Scholar 

  15. Yang Y (2021) The original design principles of the Y-series nonfullerene acceptors, from Y1 to Y6. ACS Nano 15:18679–18682

    Article  CAS  PubMed  Google Scholar 

  16. Yuan J, Zhang H, Zhang R et al (2020) Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem 6:2147–2161

    Article  CAS  Google Scholar 

  17. Zhu C, Yuan J, Cai F et al (2020) Tuning the electron-deficient-core of non-fullerene acceptor to achieve over 17% efficiency in single-junction organic solar cell. Energy Environ Sci 13:2459–2466

    Article  CAS  Google Scholar 

  18. Lin F, Jiang K, Kaminsky W et al (2020) A non-fullerene acceptor with enhanced intermolecular-core interaction for high-performance organic solar cells. J Am Chem Soc 142:15246–15251

    Article  CAS  PubMed  Google Scholar 

  19. Cui Y, Yao H, Zhang J et al (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10:2515

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen H, Zou Y, Liang H et al (2022) Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Sci China Chem 65:1362–1373

    Article  CAS  Google Scholar 

  21. Shi Y, Chang Y, Lu K et al (2022) Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat Commun 13:3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li S, Li C, Shi M, Chen H (2020) New phase for organic solar cell research: emergence of y-series electron acceptors and their perspectives. ACS Energy Lett 5:1554–1567

    Article  CAS  Google Scholar 

  23. Chen Y, Ma R, Liu T et al (2021) Side-chain engineering on y-series acceptors with chlorinated end groups enables high-performance organic solar cells. Adv Energy Mater 11:2003777

    Article  CAS  Google Scholar 

  24. Chai G, Chang Y, Zhang J et al (2021) Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ Sci 14:3469–3479

    Article  CAS  Google Scholar 

  25. Li C, Zhou J, Song J et al (2021) Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy 6:605–613

    Article  CAS  Google Scholar 

  26. Jiang K, Wei Q, Peng Z et al (2019) Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3:3020–3033

    Article  CAS  Google Scholar 

  27. Ou Z, Qin J, Jin K et al (2022) Engineering of alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. J Mater Chem A 10:3314–3320

    Article  CAS  Google Scholar 

  28. Fukuhara T, Yamazaki K, Hidani T et al (2021) Molecular understanding of how the interfacial structure impacts the open-circuit voltage of highly crystalline polymer solar cells. ACS Appl Mater Interfaces 13:34357–34366

    Article  CAS  PubMed  Google Scholar 

  29. Wang K, Li W, Guo X et al (2021) Optimizing the alkyl side-chain design of a wide band-gap polymer donor for attaining nonfullerene organic solar cells with high efficiency using a nonhalogenated solvent. Chem Mater 33:5981–5990

    Article  CAS  Google Scholar 

  30. Natsuda S, Saito T, Shirouchi R et al (2022) Cascaded energy landscape as a key driver for slow yet efficient charge separation with small energy offset in organic solar cells. Energy Environ Sci 15:1545–1555

    Article  CAS  Google Scholar 

  31. Wan P, Chen X, Liu Q et al (2021) Direct observation of the charge transfer states from a non-fullerene organic solar cell with a small driving force. J Phys Chem Lett 12:10595–10602

    Article  CAS  PubMed  Google Scholar 

  32. McMahon D, Troisi A (2010) Evaluation of the external reorganization energy of polyacenes. J Phys Chem Lett 1:941–946

    Article  CAS  Google Scholar 

  33. Burquel A, Lemaur V, Beljonne D, Lazzaroni R, Cornil J (2006) Pathways for photoinduced charge separation and recombination at donor-acceptor heterojunctions: the case of oligophenylenevinyleneperylene bisimide complexes. J Phys Chem A 110:3447–3453

    Article  CAS  PubMed  Google Scholar 

  34. Ma C, Chan C, Zou X et al (2021) Unraveling the temperature dependence of exciton dissociation and free charge generation in nonfullerene organic solar cells. Sol RRL 5:2000789

    Article  CAS  Google Scholar 

  35. Wang R, Xu J, Fu L et al (2021) Nonradiative triplet loss suppressed in organic photovoltaic blends with fluoridated nonfullerene acceptors. J Am Chem Soc 143:4359–4366

    Article  CAS  PubMed  Google Scholar 

  36. Privitera A, Grüne J, Karki A et al (2022) Geminate and nongeminate pathways for triplet exciton formation in organic solar cells. Adv Energy Mater 12:2103944

    Article  CAS  Google Scholar 

  37. Gillett A, Privitera A, Dilmurat R et al (2021) The role of charge recombination to triplet excitons in organic solar cells. Nature 597:666–671

    Article  CAS  PubMed  Google Scholar 

  38. Natsuda S, Sakamoto Y, Takeyama T et al (2021) Singlet and triplet excited-state dynamics of a nonfullerene electron acceptor Y6. J Phys Chem C 125:20806–20813

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Hebei Natural Science Foundation (No. B2021407003), National Natural Science Foundation of China (Grant No.51703049), the Scientific Research Project of Hebei Provincial Department of Education (No. QN2021068), and the Hebei Province’s Funding Project for Introducing Overseas Scholars (No. C20230119).

Author information

Authors and Affiliations

Authors

Contributions

Xingxing Shen and Shu Yang wrote the main manuscript text, Kui Niu prepared Fig. 12, Yuan He and Dan Luo prepared Figs. 34, Lu Han prepared Table 1, 2, and 3 and participate in writing the manuscript, Xingxing Shen, Shu Yang, and Lie Chen reviewed the manuscript.

Corresponding authors

Correspondence to Xingxing Shen, Lu Han or Lie Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1492 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Yang, S., Niu, K. et al. The role of isomeric alkyl chains of polymer donors on charge-transfer processes in non-fullerene organic photovoltaics: a theoretical investigation. J Nanopart Res 26, 86 (2024). https://doi.org/10.1007/s11051-024-05997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05997-2

Keywords

Navigation