Skip to main content

Advertisement

Log in

Synergistic tuning of photoluminescence and biocompatibility in CaS phosphor through dopant combinations of Eu3+, Dy3+, and Tm3+

  • Original research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, CaS phosphors were synthesized using the sol–gel method with doping of rare earth metals such as Eu, Dy, and Tm in combination. The optimization of the dopant concentration at 2% allowed for the adjustment of the samples’ characteristics. Detailed analyses were carried out, including X-ray diffraction studies, evaluation of photoluminescence characteristics, examination of hemocompatibility, and determination of the average lifetime of the excited state for this novel set of CaS phosphors. The synthesized phosphors displayed intense greenish-yellow emissions at a wavelength of 543 nm, which can be attributed to the electric dipole transition resulting from the dopants. Among the different compositions, the CaS phosphors doped with 2% Eu and 2% Dy showed exceptional structural and morphological qualities. Additionally, this composition exhibited the highest hemolysis inhibition percentage, with 82.37% of red blood cells remaining viable. Moreover, this particular sample demonstrated the maximum light efficacy in terms of radiation and excitation purity. The study emphasizes the luminescent properties and biocompatibility of the CaS phosphor, particularly when enhanced through doping. The findings suggest promising potential for the application of these phosphors in the field of bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be available on reasonable request.

References

  1. Ronda C (2001) Rare earth phosphors: fundamentals and applications.  Encyclopedia of Materials: Science and Technology  8026–8033. https://doi.org/10.1016/B978-0-12-803581-8.02416-4

  2. Muthuvel A et al (2021) Microwave-assisted green synthesis of nanoscaled titantium oxide: photocatalyst, antibacterial and antioxidant properties. J Mater Sci: Mater Electron. 32:23522–23539

    CAS  Google Scholar 

  3. Gimaev RR et al (2021) Magnetic and electronic properties of heavy lanthanides (Gd, Tb, Dy, Er, Ho, Tm). Crystals 11:82. https://doi.org/10.3390/cryst11020082

    Article  CAS  Google Scholar 

  4. Elayaraja M et al (2020) Effect of rare-earth metal ion Ce3+on the structural, optical, and photocatalytic properties of CdO nanoparticles. Nanotechnol Environ Eng 5:25

    Article  CAS  Google Scholar 

  5. Kim D (2021) Recent developments in lanthanide-doped alkaline earth aluminate phosphors with enhanced and long-persistent luminescence. Nanomaterials 11:723. https://doi.org/10.3390/nano11030723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Jintong et al (2019) Homologous metal-organic framework hybrid as tandem catalyst for enhanced therapy against hypoxic tumor cells. Angew Chem 131:7890–7894

    Article  Google Scholar 

  7. Rao RP (1986) The preparation and thermoluminescence of alkaline earth sulfide phosphors. J Mater Sci 21:3357–3386. https://doi.org/10.1007/BF02402978

    Article  CAS  Google Scholar 

  8. Sun B, Yi G et al (2002) Synthesis and characterization of strongly fluorescent europium-doped calcium sulfide nanoparticles Journal of Material. Chemistry 12:1194–1198. https://doi.org/10.1039/b109352e

    Article  CAS  Google Scholar 

  9. Peng H-S, Chiu DT (2015) Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev 44:4699–4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Javed R et al (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology 18:172

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aisida O et al. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2019.109371

  12. Jonghoon Choi and Nam Sun Wang, Nanoparticles in biomedical applications and their safety concerns, https://doi.org/10.5772/18452.

  13. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (2013) Science 1998:281

    Google Scholar 

  14. Kato K, Okamoto F (1983) Characteristics of pulsed molecular beams from an electromagnetic valve. Jpn J Appl Phys Part 1(22):76. https://doi.org/10.1143/JJAP.22.1

    Article  Google Scholar 

  15. Ghaderi S, Ramesh B et al (2010) 2010 Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: a review.". J Drug Target 19(7):475–486. https://doi.org/10.3109/1061186X.2010.526227

    Article  CAS  PubMed  Google Scholar 

  16. Kamarajan G et al (2022) Green synthesis of ZnO nanoparticles using Acalypha indica leaf extract and their photocatalyst degradation and antibacterial activity. J Indian Chem Soc 99:100695

    Article  CAS  Google Scholar 

  17. Han C, Cui Z et al (2010) Urea-type ligand-modified CdSe quantum dots as a fluorescence “turn-on” sensor for CO3(2-) anions.". Photochem Photobiol Sci 99:1269–1273

    Article  Google Scholar 

  18. Li Z, Wang K et al (2006) Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution.". Anal Biochem 354(2):169–174

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Y. Wang.et al, (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82(16):7008–7014

    Article  CAS  PubMed  Google Scholar 

  20. QiL X. Gao (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Delivery 5(3):263–267

    Article  Google Scholar 

  21. Willard DM, Van Orden A (2003) Quantum dots: resonant energy-transfer sensor.". Nat Mater 2(9):575–576

    Article  CAS  PubMed  Google Scholar 

  22. Anyanee Kamkaew  et al. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano. https://doi.org/10.1021/acsnano.6b01401.

  23. Yaa-Feng Li et al (2009) Calcium sulfide (CaS), a donor of hydrogen sulfide (H (2)S): a new antihypertensive drug? 73(3):445–7. https://doi.org/10.1016/j.mehy.2009.03.030

  24. Jutamulia S, Storti G, Lindmayer J, Seiderman W (1990) Use of electron trapping materials in optical signal processing. 1: parallel Boolean logic. Appl Opt 29(32):4806–4811

    Article  CAS  PubMed  Google Scholar 

  25. Lindmayer J (1988) Theory of lateral transistors. Solid State Technol 8:135. https://doi.org/10.1016/0038-1101(67)90077-9

    Article  Google Scholar 

  26. Barta CA, Sachs-Barrable K, Jia J, Thompson KH, Wasan KM, Orvig C (2007) Lanthanide containing compounds for therapeutic care in bone resorption disorders. Dalton Trans 21(43):5019–5030. https://doi.org/10.1039/b705123a

    Article  CAS  Google Scholar 

  27. Webster TJ, Massa-Schlueter EA et al (2004) Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25:2111–2121. https://doi.org/10.1016/j.biomaterials.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  28. Xia SJ, Zhuo J, Sun XW et al (2008) Thulium laser versus standard transurethral resection of the prostate: a randomized prospective trial. Eur Urol 53(2):382–389. https://doi.org/10.1016/j.eururo.2007.05.019

    Article  PubMed  Google Scholar 

  29. Pan TM, Lee CD (2009) Wu MH (2009) High-k Tm2O3 sensing membrane-based electrolyte−insulator−semiconductor for pH detection. J Phys Chem C 113(52):21937–21940. https://doi.org/10.1021/jp908129k

    Article  CAS  Google Scholar 

  30. Connor RO, Wang KL, Wang YJ (2008) Tunnel magnetoresistance of 604% at 300 K by suppression of ta diffusion in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 93:053506

    Google Scholar 

  31. https://libres.uncg.edu/ir/wcu/f/Lipchak2019.pdf

  32. Yang PP, Quan ZW et al (2008) Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 29(32):4341–4347. https://doi.org/10.1016/j.biomaterials.2008.07.042

    Article  CAS  PubMed  Google Scholar 

  33. Ashokan A, Menon D, Nair S, Koyakutty M (2010 Mar) A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials. 31(9):2606–2616. https://doi.org/10.1016/j.biomaterials.2009.11.113

    Article  CAS  PubMed  Google Scholar 

  34. Epple M, Neumeier M et al (2011) Synthesis of fluorescent core-shell hydroxyapatite nanoparticles. J Mater Chem 21:1250e4. https://doi.org/10.1039/C0JM02264K

    Article  Google Scholar 

  35. Barta CA, Sachs-Barrable K et al (2007) Lanthanide containing compounds for therapeutic care in bone resorption disorders. Dalton Trans: 2007:5019e30

  36. Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB (2004 May) Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 25(11):2111–2121. https://doi.org/10.1016/j.biomaterials.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  37. Han YC, Wang XY, Li SP (2010) Biocompatible europium doped hydroxyapatite nanoparticles as a biological fluorescent probe. Curr Nano Sci 6:178e83

    Google Scholar 

  38. Connor RO, Chang VS, Pantisano L, Ragnarsson LA, Aoulaiche M, Sullivan BO, Groeseneken G (2008) Appl Phys Lett 93:053506

    Article  Google Scholar 

  39. Singh J et al (2014) A dual enzyme functionalized nanostructured thulium oxide-based interface for biomedical application. Nanoscale 6:1195. https://doi.org/10.1039/c3nr05043b

    Article  CAS  PubMed  Google Scholar 

  40. Chandola LC, Khanna PP, (1988) X-Ray fluorescence analysis of thulium oxide for rare earth impurities. Radioanal J Nuclear Chemistry 121:53–59. https://doi.org/10.1007/BF02041446

  41. Saxena U, Chakraborty M, Goswami P (2011) Biosens Bioelectron 26:3037–3043

    Article  CAS  PubMed  Google Scholar 

  42. Singh J, Kalita P, Singh MK, Malhotra BD (2011) Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Appl Phys Lett 98:123702

    Article  Google Scholar 

  43. Emsley J (2001) Nature’s building blocks: An A-Z guide to the elements. Oxford University Press, Oxford, pp 129–132

    Google Scholar 

  44. Venkatesan A et al (2022) Synthesis, characterization and magnetic properties of Mg doped green pigment cobalt aluminate nanoparticles. J Mater Sci 33:21246–21257

    CAS  Google Scholar 

  45. Li Y, You B, Zhang W, Yin M (2008) Luminescent properties of β-Lu2Si2O7:RE3 +(RE=Ce, Tb) nanoparticles by sol-gel method. J Rare Earths 26:455–458. https://doi.org/10.1016/S1002-0721(08)60117-9

    Article  Google Scholar 

  46. Sena Sapan Kumar et al (2021) Dy-doped MoO3 nanobelts synthesized via hydrothermal route: influence of Dy contents on the structural, morphological and optical properties. J Alloys Compd 876:160070

    Article  Google Scholar 

  47. C´el´erier S, Laberty C, Ansart F, Lenormand P, Stevens P (2006) New chemical route based on the sol-gel process for the synthesis of hydroxyapatite La9.33Si6O26. Ceram Int 32:271–276. https://doi.org/10.1016/j.ceramint.2005.03.001

    Article  CAS  Google Scholar 

  48. Hiroaki Nakamura, Youichi Ogawa, et.al (1984) P-type and N-type Semiconductivities of solid yttrium sulfide. Trans Jpn Inst Metals, 25(10):692–697. https://doi.org/10.2320/matertrans1960.25.698

  49. Samsonov GV, Drodova SV (1972) Sulfide. Metallurgiya, Moscow

    Google Scholar 

  50. Chukova O, Nedilko SA et. al (2022) Strong Eu3+ luminescence in Lа1-x-yErx/2Eux/2CayVO4 nanocrystals: the result of co-doping optimization. J Lumin 242:118587. https://doi.org/10.1016/j.jlumin.2021.118587

  51. Daniel Louer (2017) Encyclopedia of Spectroscopy and Spectrometry (Third Edition)  723–731. https://doi.org/10.1016/B978-0-12-803224-4.00257-0

  52. Li Di, Chapter 7- Solubility, Drug-Like Properties (second edition), https://doi.org/10.1016/B978-0-12-801076-1.00007-1.

  53. Pushpendra Kumar, International Scholarly Research Network, ISRN Nanotechnology, 2011, 163168,6. https://doi.org/10.5402/2011/163168.

  54. Mustafa Ilhan et al (2016) Journal of Fluorescence. https://doi.org/10.1007/s10895-016-1875-5

  55. Ren F, Xin R, Ge X, Leng Y (2009 Oct) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5(8):3141–3149. https://doi.org/10.1016/j.actbio.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  56. Jung KY et al (2005) Effect of surface area and crystallite size on luminescent intensity of Y2O3:Eu phosphor prepared by spray pyrolysis. Mater Lett 59:2451–2456. https://doi.org/10.1016/j.matlet.2005.03.017

    Article  CAS  Google Scholar 

  57. Ilican S, Caglar Y, Caglar M, Demirci B (2008) Polycrystalline indium-doped ZnO thin films: preparation and characterization. J Optoelectron Adv Mater 10:2592–2598

    CAS  Google Scholar 

  58. Revathy MS,  Suman Raju et al. Materials Today: Proceedings.  https://doi.org/10.1016/j.matpr.2020.07.411

  59. VD Mote, Y Purushotham and BN Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics, http://www.jtaphys.com/content/2251-7235/6/1/6

  60. Kangmin Jeon, Hongseok Youn, et.al (2012) Nanoscale Research Letters, https://doi.org/10.1186/1556-276X7-253

  61. An V, Dronova M et al (2015) Optical and afm studies on P-SNS thin films deposited by magnetron sputteriNG. Chalcogenide Letters 12:483–487

    CAS  Google Scholar 

  62. Saravanakumar S,  Sivaganesh D et al (2018) Physica B 545, 134-140. https://doi.org/10.1016/j.physb.2018.05.037

  63. Jain P, Arun P (2012) Influence of grain size on the band-gap of annealed SnS thin films. https://doi.org/10.48550/arXiv.1207.2830

  64. Gӧrller-Walrand C, Huygen E et al (1994) Optical absorption spectra, crystal-field energy levels and intensities of Eu3+ in GdAl3(BO3)4. J Phys Condens Matter 6:7797–7812. https://doi.org/10.1088/0953-8984/6/38/017

    Article  Google Scholar 

  65. Atul D , Sontakke  et al.  Physica B. https://doi.org/10.1016/j.physb.2009.05.053

  66. Chukova O, Nedilko SA et al (2017) Nanoscale Research Letters 12:340

  67. Ullah MI et al (2014) Europium doped LaF3 nanocrystals with organic 9-oxidophenalenone capping ligands that display visible light excitable steady-state blue and time delayed red emission. Dalton Trans 44. https://doi.org/10.1039/C4DT03249G

  68. Binnemans K (2015) Interpretation of europium (III) spectra. Coord Chem Rev 295:1–45. https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  69. Blackburn OA, Tropiano M et al (2012) Luminescence and upconversion from thulium (III) species in solution. Phys Chem Chem Phys 14:13378–13384

    Article  CAS  PubMed  Google Scholar 

  70. Wu L, Zhang Y et al (2012) Device structure-dependent field-effect and photoresponse performances of ptype ZnTe:Sb nanoribbons. J Mater Chem 22:6463. https://doi.org/10.1039/C2JM16632A

    Article  CAS  Google Scholar 

  71. Zhang ZJ, Yuan JL et al (2007) Luminescence properties of CaZr (PO4) 2: RE (RE= Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation. J Phys D Appl Phys 40:1910. https://doi.org/10.1088/0022-3727/40/7/012

    Article  CAS  Google Scholar 

  72. Grzyb T, Runowski J, Szczeszak A (2012) Stefan Lis*influence of matrix on the luminescent and structural properties of Glycerine-capped, Tb3+-doped fluoride nanocrystals. Phys Chem C 116(32):17188–17196. https://doi.org/10.1021/jp3010579

    Article  CAS  Google Scholar 

  73. Jiao M, Guo N et al (2013) Synthesis, structure and photoluminescence properties of europium-, terbium-, and thulium-doped Ca3Bi (PO4)3 phosphors. Dalton Trans 42:12395. https://doi.org/10.1039/c3dt50552a

    Article  CAS  PubMed  Google Scholar 

  74. Mishra L, Sharma A et al (2016) White light emission and color tunability of dysprosium doped barium silicate glasses. J Lumin 169:121–127. https://doi.org/10.1016/j.jlumin.2015.08.063

    Article  CAS  Google Scholar 

  75. Nicolaj Kofod, Riikka Arppe-Tabbara, et al. Electronic energy levels of dysprosium (III) ions in solution – assigning the emitting state, the intraconfigurational 4f-4f transitions in the vis-NIR, and photophysical characterization of Dy (III) in water, methanol and dimethyl sulfoxide. J Phys Chem. https://doi.org/10.1021/acs.jpca.8b12034

  76. Kavitha V, Prema Rani M (2022) European Physical Journal Plus 137:1210.  https://doi.org/10.1140/epjp/s13360-022-03381-4

  77. Kavitha V, Prema Rani M (2022) Applied Physics A 128:1053.  https://doi.org/10.1007/s00339-022-06208-2

  78. FH Munster and Thomas Justel, ECS Journal of Solid-State Science and Technology.  https://doi.org/10.1149/2.0171801jss (2017)

  79. Janos Schanda. Encyclopedia of Color Science and Technology.  https://doi.org/10.1007/978-3-642-27851-8_325-1

  80. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, New York

    Book  Google Scholar 

  81. Marta Elena Diaz Garcia and Rosana Badia-Laino, Encyclopedia of Analytical Science, https://doi.org/10.1016/B978-0-12-409547-2.11183-7

  82. Karthick KA, Kaleeswari K et al (2022) Novel pyridoxal based molecular sensor for selective turn-on fluorescent switching functionality towards Zn (II) in live cells. J Photochem Photobiol A 428:113861. https://doi.org/10.1016/j.j.photochem.2022.113861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge The Madura College, Madurai, for their invaluable aid in the research effort, as well as the cooperation of other institutions in sample characterization. One of the authors, D. Sivaganesh, gratefully acknowledges the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Young Scientist Competition Program—2030) for supporting this work. All authors acknowledge the Central Instrumentation Facility, Department of Physics, NMS SVN College, and Madurai for UV and PL, Sophisticated Analytical Instrument Facility (SAIF) for PXRD, University Science Instrumentation Centre, Alagappa University, Karaikudi for AFM, Central Instrumentation Facility, Pondicherry University, Pondicherry for time-resolved fluorescence spectroscopy, and Trichy Research Institute of Biotechnology Pvt.Ltd., Trichy for hemocompatibility test.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M. Prema Rani and V. Kavitha; methodology: V. Kavitha; formal analysis and investigation: V. Kavitha and S. Ponsuriyaprakash; writing—original draft preparation: V. Kavitha and D. Sivaganesh; writing—review and editing: V. Kavitha and D. Sivaganesh; supervision: M. Prema Rani.

Corresponding author

Correspondence to M. Prema Rani.

Ethics declarations

Ethical approval

This paper complies with all the authors’ ethical responsibilities.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, V., Rani, M.P., Sivaganesh, D. et al. Synergistic tuning of photoluminescence and biocompatibility in CaS phosphor through dopant combinations of Eu3+, Dy3+, and Tm3+. J Nanopart Res 26, 95 (2024). https://doi.org/10.1007/s11051-024-05987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05987-4

Keywords

Navigation