Skip to main content
Log in

Investigation of nanoparticle dispersibility and stability based on TiO2 analysis by SMLS, DLS, and SEM

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Dispersibility and stability of nanoparticles (NPs) in the biological medium are playing a major role on their size, fate, transport, delivered dose to cells, and consequently to their toxicological response in vitro. However, these parameters are frequently confused and therefore very poorly characterized. Here, we critically discuss the definition and characterization of dispersibility and stability of NPs for in vitro studies. We provide a methodology based on static multiple light scattering (SMLS), dynamic light scattering (DLS), and scanning electron microscopy (SEM) measurements to characterize the NP dispersibility and stability in complex biological media. This methodology was applied to one pristine and two food-grade TiO2 NPs dispersed in commonly used cell culture media supplemented with various BSA concentrations. Dispersibility was characterized by measuring the NP size and homogeneity after applying an optimized dispersion protocol. Colloidal, gravitational, and macroscopic stabilities were distinguished by measuring the NP zeta potential, settling velocity, and Turbiscan stability index (TSI), respectively. This approach allowed to monitor in real time the NP stability instead of predictions based on initial assays such as size and zeta potential. The results also proved that (i) best NP dispersibility does not ensure the best stability, (ii) NP colloidally stable does not imply their gravitational stability in the biological medium, and (iii) TSI is a more reliable measurand of colloidal stability compared to zeta potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets produced in this study are available from the corresponding author upon request.

References

  1. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weir AP, Westerhoff L. Fabricius, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. https://doi.org/10.1021/es204168d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ji Z, Jin X, George S, Xia T, Meng H, Wang X, Nel AE (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44(19):7309–7314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allouni ZE, Cimpan MR, Høl PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf, B 68:10

    Article  Google Scholar 

  5. Yoon D, Woo D, Kim JH, Kim MK, Kim T, Hwang ES, Baik S (2011) Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium. J Nanopart Res 13(6):2543–2551

    Article  CAS  Google Scholar 

  6. Moore TL, Rodriguez-Lorenzo L, Hirsch V et al (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44(17):6287–6305

    Article  CAS  PubMed  Google Scholar 

  7. Batista CC, Panico K, Trousil J, Janoušková O, de Castro CE, Štěpánek P, Giacomelli FC (2022) Protein coronas coating polymer-stabilized silver nanocolloids attenuate cytotoxicity with minor effects on antimicrobial performance. Colloids Surf, B 218:112778

    Article  CAS  Google Scholar 

  8. Murugadoss S, Brassinne F, Sebaihi N, Petry J, Cokic SM, Van Landuyt KL, Van Den Brûle S (2020) Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Part Fibre Toxicol 17(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P (2017) Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 12(2):355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phan HT, Haes AJ (2019) What does nanoparticle stability mean? J Phys Chem C 123(27):16495–16507

    Article  CAS  Google Scholar 

  11. Mahl D, Greulich C, Meyer-Zaika W, Köller M, Epple M (2010) Gold nanoparticles: dispersibility in biological media and cell-biological effect. J Mater Chem 20(29):6176–6181

    Article  CAS  Google Scholar 

  12. ISO/TS 22107 (2021) Dispersibility of solid particles into a liquid.https://www.iso.org/obp/ui/#iso:std:iso:ts:22107:ed-1:v1:en

  13. Bhattacharjee S (2016) DLS and zeta potential – what they are and what they are not? J Control Release 235:337–351

    Article  CAS  PubMed  Google Scholar 

  14. Taurozzi JS, Hackley VA, Wiesner MR (2013) A standardized approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology 7(4):389–401

    Article  CAS  PubMed  Google Scholar 

  15. Schneider T, Westermann M, Glei M (2020) Impact of ultrasonication on the delivered dose of metal oxide particle dispersions in vitro. Colloids Surf A Physicochem Eng Asp 601:125026

    Article  CAS  Google Scholar 

  16. WALTER D (2013) Primary particles–agglomerates–aggregates. Nanomaterials, p 9–24

  17. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

    Article  CAS  PubMed  Google Scholar 

  18. NANOGENOTOX (2013) Towards a method for detecting the potential genotoxicity of nanomaterials. Available from. https://www.anses.fr/fr/system/files/ANSES-Ft-Nanogenotox_FinalReport.pdf

  19. Cohen JM, Beltran-Huarac J, Pyrgiotakis G, Demokritou P (2018) Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact 10:81–86

    Article  PubMed  Google Scholar 

  20. Verwey EJW, Overbeek JTHG (1947) Theory of the stability of lyophobic colloids. J Phys Chem 51:631–636

    Article  CAS  Google Scholar 

  21. Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 1993(43):30–59

    Article  Google Scholar 

  22. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  CAS  Google Scholar 

  23. DeLoid GM, Cohen JM, Pyrgiotakis G, Pirela SV, Pal A et al (2015) Advanced computational modeling for in vitro nanomaterial dosimetry. Part Fibre Toxicol 12(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sentis MPL, Brambilla G, Fessard V, Meunier G (2020) Simultaneous screening of the stability and dosimetry of nanoparticles dispersions for in vitro toxicological studies with static multiple light scattering technique. Toxicol In Vitro 69:104972

    Article  CAS  PubMed  Google Scholar 

  25. Sabuncu AC, Grubbs J, Qian S, Abdel-Fattah TM, Stacey MW, Beskok A (2012) Probing nanoparticle interactions in cell culture media. Colloids Surf, B 95:96–102

    Article  CAS  Google Scholar 

  26. Kaszuba M, Corbett J, Watson FM, Jones A (2010) High-concentration zeta potential measurements using light-scattering techniques. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences. 368(1927):4439–4451

  27. Vidal-Iglesias FJ, Solla-Gullón J, Rodes A, Herrero E, Aldaz A (2012) Understanding the Nernst equation and other electrochemical concepts: an easy experimental approach for students. J Chem Educ 89:936–939

    Article  CAS  Google Scholar 

  28. Hunter Robert J (2013) Zeta potential in colloid science: principles and applications. Vol. 2. Academic press

  29. Cosgrove T (ed) (2010) Colloid science: principles, methods and applications. John Wiley & Sons

  30. Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. An SSA, Kim K, Kim HM, Lee W, Lee C, Kim T et al (2014) Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica. IJN 9(Suppl 2):29

    Article  Google Scholar 

  32. Fuchs N (1934) Theory of coagulation. Z Phys Chem 171:199–220

    Article  Google Scholar 

  33. Overbeek JTHG (1982) Monodisperse colloidal systems, fascinating and useful. Adv J Colloid Interface Sci 15:251–277

    Article  CAS  Google Scholar 

  34. Romero-Cano MS, Martın-Rodrıguez A, Chauveteau G, De Las Nieves FJ (1998) Colloidal stabilization of polystyrene particles by adsorption of nonionic surfactant: II. Electrosteric stability studies. J Colloid Interface Sci 198(2):273–281

  35. Yaminsky VV, Ninham BW (1993) Hydrophobic force: Lateral enhancement of subcritical fluctuations. Langmuir 9(12):3618–3624

  36. Fogden A, Ninham BW (1999) Electrostatics of curved fluid membranes: the interplay of direct interactions and fluctuations in charged lamellar phases. Colloid Interface Sci 1999(83):85–110

    Article  Google Scholar 

  37. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press

    Book  Google Scholar 

  38. Ghomrasni NB (2021) Identification et caractérisation métrologique des nanoparticules en matrices complexes (Doctoral dissertation, Université Paris-Saclay)

  39. Rasmussen K, Mast J, De Temmermann, PJ, Verleysen E, Waegeneers N, Van Steen F, Mech A (2014) Titanium dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: characterisation and physicochemical properties

  40. Mech A, Rauscher H, Rasmussen K, Babick F, Hodoroaba VD, Ghanem A, Gilliland D (2020) The NanoDefine Methods Manual-Part 3: Standard Operating Procedures (SOPs). Publications Office of the European Union

  41. Bouzakher-Ghomrasni N, Tache O, Leroy J, Feltin N, Testard F, Chivas-Joly C (2021) Dimensional measurement of TiO2 (Nano) particles by SAXS and SEM in powder form. Talanta 234:122619

    Article  CAS  PubMed  Google Scholar 

  42. Hutin A, Carvalho MS (2022) Effect of contamination from direct sonication on characterization of nanofluid stability. Powder Technol 399:117157

    Article  CAS  Google Scholar 

  43. Retamal Marín RR, Babick F, Stintz M (2017) Ultrasonic dispersion of nanostructured materials with probe sonication− practical aspects of sample preparation. Powder Technol 318:451–458. https://doi.org/10.1016/j.powtec.2017.05.049

    Article  CAS  Google Scholar 

  44. Bouzakher N, Chivas-Joly C, Devoille L, Hochepied J-F, Feltin N (2020) Challenges in sample preparation for measuring nanoparticles size by scanning electron microscopy from suspensions, powder form and complex media. Powder Technol 359:226–237. https://doi.org/10.1016/j.powtec.2019.10.022

    Article  CAS  Google Scholar 

  45. Gottardo S, Crutzen H, Jantunen A (eds) Gottardo S, Alesandrelli M, Valeria A, Atluri R, Barberio G, Bekker C, Bergonzo P, Bleeker E, Booth A, Borges T, Buttol P, Carlander D, Castelli S, Chevillard S, Clavaguera S, Dekkers S, Delpivo C, Di Prospero Fanghella P, Dusinska M, Einola J, Ekokoski E, Fito C, Gouveia H, Grall R, Höhener K, Jantunen A, Johanson G, Laux P, Lehmann H, Leinonen R, Mech A, Micheletti C, Noorlander C, Olof-Mattsson M, Oomen A, Quiros Pesudo L, Polci M, Prina-Mello A, Rasmussen K, Rauscher H, Sanchez Jimenez A, Riego Sintes J, Scalbi S, Sergent J, Stockmann-Juvala H, Simko M, Sips A, Suarez B, Sumrein A, Van Tongeren M, Vazquez S, Vital N, Walser T, Wijnhoven S, Crutzen H (2017) NANoREG framework for the safety assessment of nanomaterials, EUR 28550 EN, Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/245972 (online), https://doi.org/10.2760/859500 (print), https://doi.org/10.2760/825444

  46. DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G et al (2014) Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5(1):1–10

    Article  Google Scholar 

  47. Farkas N, Kramar JA (2021) Dynamic light scattering distributions by any means. J Nanopart Res 23(5):1–11

    Article  Google Scholar 

  48. Foucher J, Labrosse A, Dervillé A, Zimmermann Y, Bernard G, Martinez S, Pinzan F (2017) The coming of age of the first hybrid metrology software platform dedicated to nanotechnologies (Conference Presentation). Proceedings Volume 10145, Metrology, Inspection, and Process Control for Microlithography XXXI; 1014507 (2017)  Event: SPIE Advanced Lithography, 2017, San Jose, California, United States. https://doi.org/10.1117/12.2258093

  49. Satzer P, Svec F, Sekot G, Jungbauer A (2016) Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Eng Life Sci 16:238–24

    Article  CAS  PubMed  Google Scholar 

  50. Kosmulski M (2009) Adv Coll Interface Sci 152:14–25

    Article  CAS  Google Scholar 

  51. Yusoff R, Kathawala MH, Nguyen LT, Setyawati MI, Chiew P, Wu Y et al (2018) Biomolecular interaction and kinematics differences between P25 and E171 TiO2 nanoparticles. NanoImpact 12:51–57

    Article  Google Scholar 

  52. Sentis MPL, Aracil B, Lemahieu G, Bouzaid M, Brambilla G, Meunier G (2023) Numerical prediction of long-term stability of liquid formulations determined by visual observation and static multiple light scattering. Colloids Surf A Physicochem Eng Asp Vol 663, 131070, ISSN 0927-7757. https://doi.org/10.1016/j.colsurfa.2023.131070

  53. Grasso D, Subramaniam K, Butkus M, Strevett K, Bergendahl J (2002) A review of non-DLVO interactions in environmental colloidal systems. Rev Environ Sci Biotechnol 1:17–38

    Article  CAS  Google Scholar 

  54. Patel VR, Agrawal YK (2011) Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81–87. https://doi.org/10.4103/2231-4040.82950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye J, Li R, Cheng J, Liu D, Yang Y, Wang H, Xu X, Li L, Ma P, Liu Y (2022) Comparative colloidal stability of commercial amphotericin b nanoformulations using dynamic and static multiple light scattering techniques. Int J Nanomedicine 17:6047–6064. https://doi.org/10.2147/IJN.S387681

  56. Cheimarios N, Pem B, Tsoumanis A, Ilić K, Vrček IV, Melagraki G et al (2022) An in vitro dosimetry tool for the numerical transport modelling of engineered nanomaterials powered by the Enalos RiskGONE Cloud Platform. Nanomaterials 12(22):3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thank R. Ponte for his help to evaluate the potential of the Turbiscan LAB™ on nanomaterials under the internship agreement n° 4082 between ENSICAEN and the CARMEN platform at LNE 2019-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Chivas-Joly.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: M.PL.S, G.L, and G.B are Formulaction employees. G.M is the C.E.O of Formulaction.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Dispersibility and stability of NPs are crucial parameters discussed and defined to obtain optimal dimensional properties

• Methodology to characterize the NP dispersibility and stability is provided based on SMLS, DLS, ELS, and SEM measurements

• Dispersibility and stability of one pristine and two food-grade TiONPs dispersed in water, DMEM, and RPMI supplemented with various BSA concentrations are studied

• Long-term stability is not necessarily correlated to the dispersibility of NPs

• An optimal colloid stability does not prevent NPs from gravitational instabilities

• TSI is a more reliable indicator of colloidal and gravitational stability compared to zeta potential in complex media

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1524 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sentis, M.P.L., Feltin, N., Lambeng, N. et al. Investigation of nanoparticle dispersibility and stability based on TiO2 analysis by SMLS, DLS, and SEM. J Nanopart Res 26, 55 (2024). https://doi.org/10.1007/s11051-024-05959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05959-8

Keywords

Navigation