Skip to main content

Advertisement

Log in

Exploring the advancements in surface-modified bioactive glass: enhancing antibacterial activity, promoting angiogenesis, and modulating bioactivity

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The systematically reviewed existing literature encompassing the design, development, and control of surface properties in bioactive glasses (BGs). The relevance of this investigation lies in its contribution to the literature by elucidating techniques aimed at enhancing the properties of BGs and facilitating the creation of biocomposites tailored for diverse biomedical applications. The optimization of bioactive glasses’ performance and the broadening of their applications within biomedical domains emerge as critical focal points. Emphasizing the need for contemporary advancements, the study strives to present pertinent methodologies in surface modification techniques. Furthermore, it underscores the importance of utilizing fundamental parameters to mitigate cytotoxic effects on human cells, particularly in the context of in vivo or in vitro studies, and focusing on the strategies used to enhance their bioactivity, antibacterial efficacy, and ability to promote the growth of new blood vessels. This comprehensive exploration aims to not only consolidate existing knowledge but also pave the way for innovative approaches in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chatterjee S, Gardner TJ (2002) Factors determining selection of valve prosthesis-tissue or mechanical: Current status. Pathophysiol Eval Manage Valvular Heart Dis 39:189–194. https://doi.org/10.1159/000158927

    Article  Google Scholar 

  2. Rahimtoola SH (2003) Choice of prosthetic heart valve for adult patients. J Am Coll Cardiol 41(6):893–904. https://doi.org/10.1016/S0735-1097(02)02965-0

    Article  PubMed  Google Scholar 

  3. Taye MB (2022) Biomedical applications of ion-doped bioactive glass: a review. Appl Nanosci 12(12):3797–3812. https://doi.org/10.1007/s13204-022-02672-7

    Article  ADS  CAS  Google Scholar 

  4. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier

    Google Scholar 

  5. Bhat S, Kumar A (2013) Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3(3):e24717. https://doi.org/10.4161/biom.24717

    Article  PubMed  PubMed Central  Google Scholar 

  6. Workie AB, Shih S-J (2023) Mesoporous bioactive glasses: synthesis, characterization, and their medical applications. Surf Rev Lett 30(04):2330004. https://doi.org/10.1142/S0218625X23300046

    Article  ADS  CAS  Google Scholar 

  7. Hench LL, Thompson I (2010) "Twenty-first century challenges for biomaterials". J Royal Soc Interface 7(suppl_4):S379-S391. https://doi.org/10.1098/rsif.2010.0151.focus

  8. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017. https://doi.org/10.1126/science.1067404

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zaokari Y, Persaud A, Ibrahim A (2020) Biomaterials for adhesion in orthopedic applications: a review. Eng Regene 1:51–63. https://doi.org/10.1016/j.engreg.2020.07.002

    Article  Google Scholar 

  10. Navarro M, Michiardi A, Castano O, Planell J (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158. https://doi.org/10.1098/rsif.2008.0151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226(4675):630–636. https://doi.org/10.1126/science.6093253

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Cai S, Wu C, Yang W, Liang W, Yu H, Liu L (2020) "Recent advance in surface modification for regulating cell adhesion and behaviors". 9(1):971–989. https://doi.org/10.1515/ntrev-2020-0076

  13. Amani H et al (2019) Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces 6(13):1900572. https://doi.org/10.1002/admi.201900572

    Article  CAS  Google Scholar 

  14. Thanigaivel S, Priya A, Balakrishnan D, Dutta K, Rajendran S, Soto-Moscoso M (2022) Insight on recent development in metallic biomaterials: strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications. Biochem Eng J 187:108522. https://doi.org/10.1016/j.bej.2022.108522

    Article  CAS  Google Scholar 

  15. Qiao K et al (2022) The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnol 20(1):141. https://doi.org/10.1186/s12951-022-01342-8

    Article  CAS  Google Scholar 

  16. Cai S, Wu C, Yang W, Liang W, Yu H, Liu L (2020) Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev 9(1):971–989. https://doi.org/10.1515/ntrev-2020-0076

    Article  CAS  Google Scholar 

  17. Nobles KP, Janorkar AV, Williamson RS (2021) Surface modifications to enhance osseointegration–resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 109(11):1909–1923. https://doi.org/10.1002/jbm.b.34835

    Article  CAS  PubMed  Google Scholar 

  18. Batool F et al (2021) Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J Tissue Eng 12:20417314211041428. https://doi.org/10.1177/20417314211041428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Özer A, Öksüz K (2019) The effect of yttrium oxide in hydroxyapatite/aluminum oxide hybrid biocomposite materials: phase, mechanical and morphological evaluation. Materialwiss Werkstofftech 50(11):1382–1390. https://doi.org/10.1002/mawe.201800141

    Article  CAS  Google Scholar 

  20. Tabatabaei FS, Torres R, Tayebi L (2020) "Biomedical materials in dentistry". Appl Biomed Eng Dent pp 3–20. https://doi.org/10.1007/978-3-030-21583-5_2

  21. Ege D, Zheng K, Boccaccini AR (2022) Borate bioactive glasses (BBG): bone regeneration, wound healing applications, and future directions. ACS Appl Bio Mater 5(8):3608–3622. https://doi.org/10.1021/acsabm.2c00384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang W, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci - Mater Med 17:583–596. https://doi.org/10.1007/s10856-006-9220-z

    Article  CAS  PubMed  Google Scholar 

  23. Rahaman MN, Liang W, Day DE (2005) Preparation and bioactive characteristics of porous borate glass substrates. Adv Bioceram Biocomposites: Ceramic Eng Sci Proc 26:1–10. https://doi.org/10.1002/9780470291269.ch1

    Article  Google Scholar 

  24. Pan H et al (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface 7(48):1025–1031. https://doi.org/10.1098/rsif.2009.0504

    Article  CAS  PubMed  Google Scholar 

  25. Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV (2017) Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater 59:2–11. https://doi.org/10.1016/j.actbio.2017.06.046

    Article  CAS  PubMed  Google Scholar 

  26. Yang X et al (2012) Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non-Cryst Solids 358(9):1171–1179. https://doi.org/10.1016/j.jnoncrysol.2012.02.005

    Article  ADS  CAS  Google Scholar 

  27. Fu Q, Rahaman MN, Fu H, Liu X (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res, Part A 95(1):164–171. https://doi.org/10.1002/jbm.a.32824

    Article  CAS  Google Scholar 

  28. Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE (2007) In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc 90(1):303–306. https://doi.org/10.1111/j.1551-2916.2006.01358.x

    Article  CAS  Google Scholar 

  29. Negut I, Ristoscu C (2023) Bioactive glasses for soft and hard tissue healing applications—a short review. Appl Sci 13(10):6151. https://doi.org/10.3390/app13106151

    Article  CAS  Google Scholar 

  30. Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15. https://doi.org/10.1016/j.actbio.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  31. Kaou MH, Furkó M, Balázsi K, Balázsi C (2023) Advanced bioactive glasses: the newest achievements and breakthroughs in the area. Nanomaterials 13(16):2287. https://doi.org/10.3390/nano13162287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  33. Zhao W, Chang J (2004) Sol–gel synthesis and in vitro bioactivity of tricalcium silicate powders. Mater Lett 58(19):2350–2353. https://doi.org/10.1016/j.molstruc.2014.03.066

    Article  CAS  Google Scholar 

  34. Öksüz K, Kılınç S, Özer A (2019) "Effect of calcination on microstructure development and properties of hydroxyapatite powders extracted from human and bovine bones". Trans Indian Ceramic Soc 78. https://doi.org/10.1080/0371750x.2019.1588170

  35. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY (2019) Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 23(1):1–11. https://doi.org/10.1186/s40824-018-0149-3

    Article  CAS  Google Scholar 

  36. Tavoni M, Dapporto M, Tampieri A, Sprio S (2021) Bioactive calcium phosphate-based composites for bone regeneration. J Compos Sci 5(9):227. https://doi.org/10.3390/jcs5090227

    Article  CAS  Google Scholar 

  37. Farag MM (2023) Recent trends on biomaterials for tissue regeneration applications. J Mater Sci 58(2):527–558. https://doi.org/10.1007/s10853-022-08102-x

    Article  ADS  CAS  Google Scholar 

  38. LeGeros RZ, Legeros JP (1984) "Phosphate minerals in human tissues". Phosphate Miner 351–385. https://doi.org/10.1007/978-3-642-61736-2_12

  39. Hench LL (1993) An introduction to bioceramics. World scientific

    Book  Google Scholar 

  40. Gauthier O et al (2001) Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J Mater Sci - Mater Med 12(5):385

    Article  CAS  PubMed  Google Scholar 

  41. Bandyopadhyay A, Bernard S, Xue W, Bose S (2006) Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89(9):2675–2688. https://doi.org/10.1111/j.1551-2916.2006.01207.x

    Article  CAS  Google Scholar 

  42. Rahaman MN et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Katti KS (2004) Biomaterials in total joint replacement. Colloids Surf, B 39(3):133–142. https://doi.org/10.1016/j.colsurfb.2003.12.002

    Article  CAS  Google Scholar 

  44. GoksenTosun N, Ozer A, Bektas T, Oksuz KE, ErdenTayhan S, Ozdemir T (2023) Silk sericin-hydroxyapatite nanoribbons toward structurally stable osteogenic scaffolds. J Australian Ceramic Soc 59(5):1291–1301. https://doi.org/10.1007/s41779-023-00909-4

    Article  CAS  Google Scholar 

  45. Kazem-Rostami M, Moghanian A (2017) Hünlich base derivatives as photo-responsive Λ-shaped hinges. Org Chem Front 4(2):224–228. https://doi.org/10.1039/C6QO00653A

    Article  CAS  Google Scholar 

  46. Moghanian A et al (2021) Characterization, in vitro bioactivity and biological studies of sol-gel-derived TiO2 substituted 58S bioactive glass. Int J Appl Ceram Technol 18(5):1430–1441. https://doi.org/10.1111/ijac.13782

    Article  CAS  Google Scholar 

  47. Hasan ML, Kim B, Padalhin AR, Faruq O, Sultana T, Lee B-T (2019) In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. Mater Sci Eng, C 103:109775. https://doi.org/10.1016/j.msec.2019.109775

    Article  CAS  Google Scholar 

  48. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x

    Article  CAS  Google Scholar 

  49. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12(2):155–163. https://doi.org/10.1016/0142-9612(91)90194-F

    Article  CAS  PubMed  Google Scholar 

  50. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  51. Yu Y, Bacsik Z, Edén M (2018) Contrasting in vitro apatite growth from bioactive glass surfaces with that of spontaneous precipitation. Materials 11(9):1690. https://doi.org/10.3390/ma11091690

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Workie AB, Shih S-J (2022) A study of bioactive glass–ceramic’s mechanical properties, apatite formation, and medical applications. RSC Adv 12(36):23143–23152. https://doi.org/10.1039/D2RA03235J

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kokubo T, Kim H-M, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24(13):2161–2175. https://doi.org/10.1016/S0142-9612(03)00044-9

    Article  CAS  PubMed  Google Scholar 

  54. Clark A, Hench L, Paschall H (1976) The influence of surface chemistry on implant interface histology: a theoretical basis for implant materials selection. J Biomed Mater Res 10(2):161–174. https://doi.org/10.1002/jbm.820100202

    Article  CAS  PubMed  Google Scholar 

  55. Khorsandi D, Moghanian A, Nazari R, Arabzadeh G, Borhani S (2016) Personalized medicine: regulation of genes in human skin ageing. J Allergy Ther 7(245):2–11. https://doi.org/10.4172/2155-6121.1000245

    Article  Google Scholar 

  56. Moghanian A, Pazhouheshgar A, Ghorbanoghli A (2021) "Nonlinear viscoelastic modeling of synthesized silicate-based bioactive glass/polysulfone composite: theory and medical applications". Silicon 1-10. https://doi.org/10.1007/s12633-020-00900-9

  57. Saatchi A, Arani AR, Moghanian A, Mozafari M (2021) Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications. Ceram Int 47(1):260–271. https://doi.org/10.1016/j.ceramint.2020.08.130

    Article  CAS  Google Scholar 

  58. Moghanian A, Tajer MHM, Zohourfazeli M, Miri Z, Yazdi M (2021) Sol-gel derived silicate-based bioactive glass: studies of synergetic effect of zirconium and magnesium on structural and biological characteristics. J Non-Cryst Solids 554:120613. https://doi.org/10.1016/j.jnoncrysol.2020.120613

    Article  CAS  Google Scholar 

  59. Saatchi A, Arani AR, Moghanian A, Mozafari M (2021) Cerium-doped bioactive glass-loaded chitosan/polyethylene oxide nanofiber with elevated antibacterial properties as a potential wound dressing. Ceram Int 47(7):9447–9461. https://doi.org/10.1016/j.ceramint.2020.12.078

    Article  CAS  Google Scholar 

  60. Öksüz KE, Kurt BM, Şahin İnan ZD, Hepokur C (2023) "Novel bioactive glass/graphene oxide-coated surgical sutures for soft tissue regeneration". ACS Omega. https://doi.org/10.1021/acsomega.3c00978

  61. Sepulveda P, Jones J, Hench L (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61(2):301–311. https://doi.org/10.1002/jbm.10207

    Article  CAS  PubMed  Google Scholar 

  62. Clupper D, Hench L (2003) Crystallization kinetics of tape cast bioactive glass 45S5. J Non-Cryst Solids 318(1–2):43–48. https://doi.org/10.1016/S0022-3093(02)01857-4

    Article  ADS  CAS  Google Scholar 

  63. Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425. https://doi.org/10.1016/j.biomaterials.2005.11.025

    Article  CAS  PubMed  Google Scholar 

  64. Boccaccini AR, Chen Q, Lefebvre L, Gremillard L, Chevalier J (2007) Sintering, crystallisation and biodegradation behaviour of Bioglass®-derived glass–ceramics. Faraday Discuss 136:27–44. https://doi.org/10.1039/B616539G

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Lefebvre L, Gremillard L, Chevalier J, Zenati R, Bernache-Assolant D (2008) Sintering behaviour of 45S5 bioactive glass. Acta Biomater 4(6):1894–1903. https://doi.org/10.1016/j.actbio.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  66. Bretcanu O, Chatzistavrou X, Paraskevopoulos K, Conradt R, Thompson I, Boccaccini AR (2009) Sintering and crystallisation of 45S5 Bioglass® powder. J Eur Ceram Soc 29(16):3299–3306. https://doi.org/10.1016/j.jeurceramsoc.2009.06.035

    Article  CAS  Google Scholar 

  67. Huang R, Pan J, Boccaccini A, Chen Q (2008) A two-scale model for simultaneous sintering and crystallization of glass–ceramic scaffolds for tissue engineering. Acta Biomater 4(4):1095–1103. https://doi.org/10.1016/j.actbio.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  68. Wallace K, Hill R, Pembroke J, Brown C, Hatton P (1999) Influence of sodium oxide content on bioactive glass properties. J Mater Sci - Mater Med 10:697–701. https://doi.org/10.1023/A:1008910718446

    Article  CAS  PubMed  Google Scholar 

  69. Kansal I et al (2014) Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses. Mater Sci Eng, C 44:159–165. https://doi.org/10.1016/j.msec.2014.08.016

    Article  CAS  Google Scholar 

  70. Fernandes HR, Gaddam A, Rebelo A, Brazete D, Stan GE, Ferreira JM (2018) Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials 11(12):2530. https://doi.org/10.3390/ma11122530

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2(4):231–239. https://doi.org/10.1002/jab.770020403

    Article  CAS  PubMed  Google Scholar 

  72. Li R, Clark A, Hench L (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2(4):231–239. https://doi.org/10.1002/jab.770020403

    Article  CAS  PubMed  Google Scholar 

  73. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel–derived 58S bioactive glasses. J Biomed Mater Res 58(6):734–740. https://doi.org/10.1002/jbm.10026

    Article  CAS  PubMed  Google Scholar 

  74. Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng, C 31(7):1245–1256. https://doi.org/10.1016/j.msec.2011.04.022

    Article  CAS  Google Scholar 

  75. Shih S-J, Chou Y-J, Panjaitan LVP (2013) Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass. Ceram Int 39(8):8773–8779. https://doi.org/10.1016/j.ceramint.2013.04.064

    Article  CAS  Google Scholar 

  76. Shih C, Chen H, Huang L, Lu P, Chang H, Chang I (2010) Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds. Mater Sci Eng, C 30(5):657–663. https://doi.org/10.1016/j.msec.2010.02.006

    Article  CAS  Google Scholar 

  77. Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22(6):493–507. https://doi.org/10.1016/0272-8842(95)00126-3

    Article  CAS  Google Scholar 

  78. Hench L (1994) "Bioactive ceramics: theory and clinical applications". in Bioceramics: Elsevier pp 3–14

  79. Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110(3):522–530. https://doi.org/10.1016/j.jconrel.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  80. Hoppe U (2016) "Model considerations of changes in the average M–O coordination numbers of ternary alkali mixed glass former phosphate glasses, A2O–MyOz–P2O5". Phys Chem Glasses-European J Glass Sci Technol Part B 57(6):254–266. https://doi.org/10.13036/17533562.57.6.041

  81. Ahmed I, Lewis M, Olsen I, Knowles J (2004) Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25(3):491–499. https://doi.org/10.1016/S0142-9612(03)00546-5

    Article  CAS  PubMed  Google Scholar 

  82. Rahaman MN et al (2011) Bioactive glass in tissue engineering. Acta Biomaterialia 7(6):2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salih V, Franks K, James M, Hastings G, Knowles J, Olsen I (2000) Development of soluble glasses for biomedical use part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J Mater Sci - Mater Med 11:615–620. https://doi.org/10.1023/A:1008901612674

    Article  CAS  PubMed  Google Scholar 

  84. Chen F, Zhang W, Liu S (2020) Porous glass-ceramics derived from MgO–CuO–TiO2–P2O5 glasses with different additions of Fe2O3. Ceram Int 46(5):6560–6566. https://doi.org/10.1016/j.ceramint.2019.11.140

    Article  CAS  Google Scholar 

  85. Babu MM, Rao PV, Govindan NP, Gujjala R, Prasad PS (2023) "Structural and in vitro bioactivity of phosphate-based glasses for bone regeneration," in Advances in Glass Research: Springer, pp 113–152

  86. Ege D, Nawaz Q, Beltrán AM, Boccaccini AR (2022) Effect of boron-doped mesoporous bioactive glass nanoparticles on C2C12 cell viability and differentiation: potential for muscle tissue application. ACS Biomater Sci Eng 8(12):5273–5283. https://doi.org/10.1021/acsbiomaterials.2c00876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Uluisik I, Karakaya HC, Koc A (2018) The importance of boron in biological systems. J Trace Elem Med Biol 45:156–162. https://doi.org/10.1016/j.jtemb.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  88. Armstrong TA, Spears JW, Crenshaw TD, Nielsen FH (2000) Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J Nutr 130(10):2575–2581. https://doi.org/10.1093/jn/130.10.2575

    Article  CAS  PubMed  Google Scholar 

  89. Chapin RE et al (1997) The effects of dietary boron on bone strength in rats. Toxicol Sci 35(2):205–215. https://doi.org/10.1093/toxsci/35.2.205

    Article  CAS  Google Scholar 

  90. Tepedelen BE, Soya E, Korkmaz M (2016) Boric acid reduces the formation of DNA double strand breaks and accelerates wound healing process. Biol Trace Elem Res 174:309–318. https://doi.org/10.1007/s12011-016-0729-9

    Article  CAS  PubMed  Google Scholar 

  91. Oluwatosin DA, El Mabrouk K, Bricha M (2023) "A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications". J Mater Chem B. https://doi.org/10.1039/D2TB02505A

  92. Schuhladen K et al (2021) Influence of the replacement of silica by boron trioxide on the properties of bioactive glass scaffolds. Int J Appl Glas Sci 12(3):293–312

    Article  CAS  Google Scholar 

  93. Wright AC (2010) Borate structures: crystalline and vitreous. Phys Chem Glasses-European J Glass Sci Technol Part B 51(1):1–39

    ADS  CAS  Google Scholar 

  94. Gu Y, Huang W, Rahaman MN, Day DE (2013) Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomater 9(11):9126–9136. https://doi.org/10.1016/j.actbio.2013.06.039

    Article  CAS  PubMed  Google Scholar 

  95. Liu X, Rahaman MN, Day DE (2013) Conversion of melt-derived microfibrous borate (13–93B3) and silicate (45S5) bioactive glass in a simulated body fluid. J Mater Sci - Mater Med 24:583–595. https://doi.org/10.1007/s10856-012-4831-z

    Article  CAS  PubMed  Google Scholar 

  96. Liang W, Rahaman MN, Day DE, Marion NW, Riley GC, Mao JJ (2008) Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids 354(15–16):1690–1696. https://doi.org/10.1016/j.jnoncrysol.2007.10.003

    Article  ADS  CAS  Google Scholar 

  97. Schuhladen K, Wang X, Hupa L, Boccaccini AR (2018) Dissolution of borate and borosilicate bioactive glasses and the influence of ion (Zn, Cu) doping in different solutions. J Non-Cryst Solids 502:22–34. https://doi.org/10.1016/j.jnoncrysol.2018.08.037

    Article  ADS  CAS  Google Scholar 

  98. Sengupta S, Michalek M, Liverani L, Švančárek P, Boccaccini AR, Galusek D (2021) Preparation and characterization of sintered bioactive borate glass tape. Mater Lett 282:128843. https://doi.org/10.1016/j.matlet.2020.128843

    Article  CAS  Google Scholar 

  99. Thyparambil NJ, Gutgesell LC, Hurley CC, Flowers LE, Day DE, Semon JA (2020) Adult stem cell response to doped bioactive borate glass. J Mater Sci - Mater Med 31:1–8. https://doi.org/10.1007/s10856-019-6353-4

    Article  CAS  Google Scholar 

  100. Gobbo VA et al (2023) Surface modification of silicate, borosilicate and phosphate bioactive glasses to improve/control protein adsorption: part I. Ceram Int 49(1):1261–1275. https://doi.org/10.1016/j.ceramint.2022.09.105

    Article  CAS  Google Scholar 

  101. Karahan G, Tan E, Danışman-Kalındemirtaş F, Erdem-Kuruca S, Karakuş S (2022) Kappa carrageenan/PEG-halloysite nanocomposites: surface characterization with an artificial intelligence technique, antimicrobial, and anticancer properties. J Drug Deliv Sci Technol 75:103615. https://doi.org/10.1016/j.jddst.2022.103615

    Article  CAS  Google Scholar 

  102. Kargozar S et al (2019) Functionalization and surface modifications of bioactive glasses (BGs): tailoring of the biological response working on the outermost surface layer. Materials 12(22):3696. https://doi.org/10.3390/ma12223696

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deng X, Castillo E, Anderson J (1986) Surface modification of soft contact lenses: silanization, wettability and lysozyme adsorption studies. Biomaterials 7(4):247–251. https://doi.org/10.1016/0142-9612(86)90044-X

    Article  CAS  PubMed  Google Scholar 

  104. Wang L, Hong R (2011) "Synthesis, surface modification and characterization of nanoparticles". Advances in nanocomposites—synthesis, characterization and industrial applications, pp 289–323

  105. Catauro M, Nunziante SP, Papale F, Bollino F (2015) Preparation of 0.7 SiO 2· 0.3 CaO/PCL hybrid layers via sol–gel dip coating for the surface modification of titanium implants: characterization, bioactivity and biocompatibility evaluation. J Sol-Gel Sci Technol 76:241–250. https://doi.org/10.1007/s10971-015-3771-8

    Article  CAS  Google Scholar 

  106. Vichery C, Nedelec J-M (2016) Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications. Materials 9(4):288. https://doi.org/10.3390/ma9040288

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pan Z, Guo J, Li S, Li X, Zhang H (2021) Properties of alumina coatings prepared on silica-based ceramic substrate by plasma spraying and sol-gel dipping methods. Ceram Int 47(19):27453–27461. https://doi.org/10.1016/j.ceramint.2021.06.168

    Article  CAS  Google Scholar 

  108. Sivkov A, Shanenkova Y, Vympina Y, Nikitin D, Shanenkov I (2022) Deposition of copper coatings on internal aluminum contact surfaces by high-energy plasma spraying. Surf Coat Technol 440:128484. https://doi.org/10.1016/j.surfcoat.2022.128484

    Article  CAS  Google Scholar 

  109. Malik MA (2006) Macroporous 4-vinylpyridine-divinylbenzene–estimation of pore volume, surface area, and pore size distribution. e-Polymers 6(1):040. https://doi.org/10.1515/epoly.2006.6.1.524

    Article  Google Scholar 

  110. Rizky NS, Rikmasari R, Bonifacius S (2022) Evaluation of zirconia surface roughness after different surface treatment with sandblasting, hydrofluoric acid etching, and combination treatment. Key Eng Mater 932:163–169. https://doi.org/10.4028/p-46wccw

    Article  Google Scholar 

  111. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. https://doi.org/10.1016/j.addr.2008.03.012

    Article  CAS  PubMed  Google Scholar 

  112. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem 118(36):6120–6124. https://doi.org/10.1002/ange.200601878

    Article  ADS  Google Scholar 

  113. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46(40):7548–7558. https://doi.org/10.1002/anie.200604488

    Article  CAS  Google Scholar 

  114. Yang S-T et al (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181(3):182–189. https://doi.org/10.1016/j.toxlet.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  115. Endo M, Strano MS, Ajayan PM (2008) "Potential applications of carbon nanotubes," Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications pp 13–62. https://doi.org/10.1007/978-3-540-72865-8_2

  116. Gabbi C, Cacchioli A, Locardi B, Guadagnino E (1995) Bioactive glass coating: physicochemical aspects and biological findings. Biomaterials 16(7):515–520. https://doi.org/10.1016/0142-9612(95)91123-G

    Article  CAS  PubMed  Google Scholar 

  117. Kenny S, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci - Mater Med 14(11):923–938. https://doi.org/10.1023/A:1026394530192

    Article  CAS  PubMed  Google Scholar 

  118. Kirchhof K, Groth T (2008) Surface modification of biomaterials to control adhesion of cells. Clin Hemorheol Microcirc 39:247–251. https://doi.org/10.3233/CH-2008-1089

    Article  CAS  PubMed  Google Scholar 

  119. Groth T et al (M) "Chemical and physical modifications of biomaterial surfaces to control adhesion of cells". In: Advances in Regenerative Medicine: Role of Nanotechnology, and Engineering Principles: Role of Nanotechnology, and Engineering Principles, 2010: Springer, pp 253–284. https://doi.org/10.1007/978-90-481-8790-4_13

  120. Lopes JH, Fonseca EMB, Mazali IO, Magalhães A, Landers R, Bertran CA (2017) Facile and innovative method for bioglass surface modification: optimization studies. Mater Sci Eng, C 72:86–97. https://doi.org/10.1016/j.msec.2016.11.044

    Article  CAS  Google Scholar 

  121. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  122. Ruckenstein E, Li Z (2005) Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv Coll Interface Sci 113(1):43–63. https://doi.org/10.1016/j.cis.2004.07.009

    Article  CAS  Google Scholar 

  123. He W et al (2013) Surface modification of colloidal silica nanoparticles: controlling the size and grafting process. Bull Korean Chem Soc 34(9):2747–2752. https://doi.org/10.5012/bkcs.2013.34.9.2747

    Article  CAS  Google Scholar 

  124. Jiao WM, Vidal A, Papirer E, Donnet J (1989) Modification of silica surfaces by grafting of alkyl chains part III. Particle/particle interactions: rheology of silica suspensions in low molecular weight analogs of elastomers. Colloids Surf 40:279–291. https://doi.org/10.1016/0166-6622(89)80026-5

    Article  CAS  Google Scholar 

  125. Vasconcelos D, Carvalho J, Mantel M, Vasconcelos W (2000) Corrosion resistance of stainless steel coated with sol–gel silica. J Non-Cryst Solids 273(1–3):135–139. https://doi.org/10.1016/S0022-3093(00)00155-1

    Article  ADS  CAS  Google Scholar 

  126. Galliano P, De Damborenea JJ, Pascual MJ, Durán A (1998) Sol-gel coatings on 316L steel for clinical applications. J Sol-Gel Sci Technol 13:723–727. https://doi.org/10.1023/A:1008653208083

    Article  CAS  Google Scholar 

  127. Vallet-Regí M (2001) Ceramics for medical applications. J Chem Soc, Dalton Trans 2:97–108. https://doi.org/10.1039/B007852M

    Article  Google Scholar 

  128. Messing GL, Zhang SC, Jayanthi GV (1993) Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 76(11):2707–2726. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x

    Article  CAS  Google Scholar 

  129. Shih S-J, Wu Y-Y, Chen C-Y, Yu C-Y (2012) Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. J Nanopart Res 14(5):1–9. https://doi.org/10.1007/s11051-012-0879-4

    Article  CAS  Google Scholar 

  130. Shih S-J, Wu Y-Y, Chen C-Y, Yu C-Y (2012) Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. J Nanopart Res 14:1–9. https://doi.org/10.1007/s11051-012-0879-4

    Article  CAS  Google Scholar 

  131. Shih SJ, Tzeng WL, Jatnika R, Shih CJ, Borisenko KB (2015) Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res B Appl Biomater 103(4):899–907. https://doi.org/10.1002/jbm.b.33273

    Article  CAS  PubMed  Google Scholar 

  132. Kurtuldu F, Mutlu N, Boccaccini AR, Galusek D (2022) Gallium containing bioactive materials: a review of anticancer, antibacterial, and osteogenic properties. Bioactive Mater 17:125–146. https://doi.org/10.1016/j.bioactmat.2021.12.034

    Article  CAS  Google Scholar 

  133. Migneco C, Fiume E, Verné E, Baino F (2020) A guided walk through the world of mesoporous bioactive glasses (MBGs): fundamentals, processing, and applications. Nanomaterials 10(12):2571. https://doi.org/10.3390/nano10122571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ji L et al (2021) Preparation of bioactive glass nanoparticles with highly and evenly doped calcium ions by reactive flash nanoprecipitation. J Mater Sci - Mater Med 32:1–10. https://doi.org/10.1007/s10856-021-06521-x

    Article  CAS  Google Scholar 

  135. Nilawar S, Uddin M, Chatterjee K (2021) Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments. Mater Adv 2(24):7820–7841. https://doi.org/10.1039/D1MA00733E

    Article  CAS  Google Scholar 

  136. Gilbert JC, Hadgraft J, Bye A, Brookes LG (1986) Drug release from pluronic F-127 gels. Int J Pharm 32(2–3):223–228. https://doi.org/10.1016/0378-5173(86)90182-1

    Article  CAS  Google Scholar 

  137. Wang JC, Bindokas VP, Skinner M, Emrick T, Marks JD (2017) Mitochondrial mechanisms of neuronal rescue by F-68, a hydrophilic pluronic block co-polymer, following acute substrate deprivation. Neurochem Int 109:126–140. https://doi.org/10.1016/j.neuint.2017.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang X et al (2012) Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 12(6):3050–3061. https://doi.org/10.1021/nl300895y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhao J, Chong JY, Shi L, Wang R (2021) PTFE-assisted immobilization of pluronic F127 in PVDF hollow fiber membranes with enhanced hydrophilicity through nonsolvent-thermally induced phase separation method. J Membr Sci 620:118914. https://doi.org/10.1016/j.memsci.2020.118914

    Article  CAS  Google Scholar 

  140. Russo A et al (2016) Biotin-targeted Pluronic® P123/F127 mixed micelles delivering niclosamide: a repositioning strategy to treat drug-resistant lung cancer cells. Int J Pharm 511(1):127–139. https://doi.org/10.1016/j.ijpharm.2016.06.118

    Article  CAS  PubMed  Google Scholar 

  141. Wei Z, Yuan S, Hao J, Fang X (2013) Mechanism of inhibition of P-glycoprotein mediated efflux by pluronic P123/F127 block copolymers: relationship between copolymer concentration and inhibitory activity. Eur J Pharm Biopharm 83(2):266–274. https://doi.org/10.1016/j.ejpb.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  142. Thanitwatthanasak S, Sagis LM, Chitprasert P (2019) Pluronic F127/pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: mixture-design optimization, micellization, and solubilization behavior. J Mol Liq 274:223–238. https://doi.org/10.1016/j.molliq.2018.10.089

    Article  CAS  Google Scholar 

  143. Abd-Elsalam WH, El-Zahaby SA, Al-Mahallawi AM (2018) Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery. Drug Delivery 25(1):484–492. https://doi.org/10.1080/10717544.2018.1436098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fares AR, ElMeshad AN, Kassem MA (2018) Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Delivery 25(1):132–142. https://doi.org/10.1080/03639045.2019.1574812

    Article  CAS  PubMed  Google Scholar 

  145. Kadam Y, Ganguly R, Kumbhakar M, Aswal V, Hassan P, Bahadur P (2009) Time dependent sphere-to-rod growth of the pluronic micelles: investigating the role of core and corona solvation in determining the micellar growth rate. J Phys Chem B 113(51):16296–16302. https://doi.org/10.1021/jp9036974

    Article  CAS  PubMed  Google Scholar 

  146. Ganguly R et al (2017) Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: an exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids Surf, B 152:176–182. https://doi.org/10.1016/j.colsurfb.2017.01.023

    Article  CAS  Google Scholar 

  147. Ganguly R, Kunwar A, Kota S, Kumar S, Aswal V (2018) Micellar structural transitions and therapeutic properties in tea tree oil solubilized pluronic P123 solution. Colloids Surf, A 537:478–484. https://doi.org/10.1016/j.colsurfa.2017.10.045

    Article  CAS  Google Scholar 

  148. Ganguly R et al (2020) Structural and therapeutic properties of Pluronic® P123/F127 micellar systems and their modulation by salt and essential oil. J Mol Liq 310:113231. https://doi.org/10.1016/j.molliq.2020.113231

    Article  CAS  Google Scholar 

  149. Ma X-K et al (2010) Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids Surf, A 358(1–3):172–176. https://doi.org/10.1016/j.colsurfa.2010.01.051

    Article  CAS  Google Scholar 

  150. Fardad M (2000) Catalysts and the structure of SiO2 sol-gel films. J Mater Sci 35:1835–1841. https://doi.org/10.1023/A:1004749107134

    Article  ADS  CAS  Google Scholar 

  151. Issa AA, Luyt AS (2019) Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: a review. Polymers 11(3):537. https://doi.org/10.3390/polym11030537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen Q-Z, Li Y, Jin L-Y, Quinn JM, Komesaroff PA (2010) A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater 6(10):4143–4153. https://doi.org/10.1016/j.actbio.2010.04.022

    Article  CAS  PubMed  Google Scholar 

  153. Li X, Cai S, Zhang W, Xu G, Zhou W (2009) Effect of pH values on surface modification and solubility of phosphate bioglass-ceramics in the CaO–P2O5–Na2O–SrO–ZnO system. Appl Surf Sci 255(22):9241–9243. https://doi.org/10.1016/j.apsusc.2009.07.009

    Article  ADS  CAS  Google Scholar 

  154. Dadgostar P (2019) "Antimicrobial resistance: implications and costs". Infect Drug Resist pp 3903–3910. https://doi.org/10.2147/2FIDR.S234610

  155. Jonas OB, Irwin A, Berthe FCJ, Le Gall FG, Marquez PV (2017) Drug-resistant infections: a threat to our economic future (Vol. 2): final report, HNP/Agriculture Global Antimicrobial Resistance Initiative. https://documents.worldbank.org/curated/en/323311493396993758/final-report. Accessed 28 Apr 2017

  156. W. H. Organization (2021) Global antimicrobial resistance and use surveillance system (GLASS) report. https://www.who.int/health-topics/antimicrobial-resistance

  157. Rizk SS, Elwakil WH, Attia AS (2021) Antibiotic-resistant Acinetobacter baumannii in low-income countries (2000–2020): twenty-one years and still below the radar, is it not there or can they not afford to look for it? Antibiotics 10(7):764. https://doi.org/10.3390/antibiotics10070764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Working ACGD (2023) New grand bargain to improve the antimicrobial market for human health, final report of 2023. Washington, DC, and London, UK: center for global development. https://www.cgdev.org/amr

  159. Sharma A et al (2023) Globalisation of antibiotic-resistant bacteria at recurring mass gathering events. The Lancet 402(10398):e5–e7. https://doi.org/10.1016/S0140-6736(22)01995-X

    Article  Google Scholar 

  160. E. National Academies of Sciences and Medicine (2021) Combating antimicrobial resistance and protecting the miracle of modern medicine. https://doi.org/10.17226/26350

  161. Sharma M, Walia K, Bansal N (2022) Unmet needs for management of drug-resistant infections: low-and middle-income countries’ viewpoint. Drug Target Insights 16:78. https://doi.org/10.33393/2Fdti.2022.2532

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zhu Y et al (2022) Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 42(4):1377–1422. https://doi.org/10.1002/med.21879

    Article  CAS  PubMed  Google Scholar 

  163. Mourino V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9(68):401–419. https://doi.org/10.1098/rsif.2011.0611

    Article  CAS  PubMed  Google Scholar 

  164. Mouriño V, Vidotto R, Cattalini J, Boccaccini A (2019) Enhancing biological activity of bioactive glass scaffolds by inorganic ion delivery for bone tissue engineering. Curr Opin Biomed Eng 10:23–34. https://doi.org/10.1016/j.cobme.2019.02.002

    Article  Google Scholar 

  165. Workie AB, Sefene EM (2022) Ion-doped mesoporous bioactive glass: preparation, characterization, and applications using the spray pyrolysis method. RSC Adv 12(3):1592–1603. https://doi.org/10.1039/D1RA06113E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang X et al (2016) The synergistic antibacterial activity and mechanism of multicomponent metal ions-containing aqueous solutions against Staphylococcus aureus. J Inorg Biochem 163:214–220. https://doi.org/10.1016/j.jinorgbio.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  167. Stanić V et al (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256(20):6083–6089. https://doi.org/10.1016/j.apsusc.2010.03.124

    Article  ADS  CAS  Google Scholar 

  168. Kalaivani S, Singh RK, Ganesan V, Kannan S (2014) Effect of copper (Cu 2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal. J Mater Chem B 2(7):846–858. https://doi.org/10.1039/C3TB21522A

    Article  CAS  PubMed  Google Scholar 

  169. Wyszogrodzka G, Marszałek B, Gil B, Dorożyński P (2016) Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discovery Today 21(6):1009–1018. https://doi.org/10.1016/j.drudis.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  170. Zambanini T, Borges R, Kai KC, Marchi J (2019) "Bioactive glasses for treatment of bone infections". In: Biomedical, therapeutic and clinical applications of bioactive glasses: Elsevier pp 383–415

  171. Palza H, Escobar B, Bejarano J, Bravo D, Diaz-Dosque M, Perez J (2013) Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Mater Sci Eng, C 33(7):3795–3801. https://doi.org/10.1016/j.msec.2013.05.012

    Article  CAS  Google Scholar 

  172. El-Rashidy AA et al (2018) Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol-gel process and modified Stöber method. J Non-Cryst Solids 483:26–36. https://doi.org/10.1016/j.jnoncrysol.2017.12.044

    Article  ADS  CAS  Google Scholar 

  173. Tautkus S, Ishikawa K, Ramanauskas R, Kareiva A (2020) Zinc and chromium co-doped calcium hydroxyapatite: sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J Solid State Chem 284:121202. https://doi.org/10.1016/j.jssc.2020.121202

    Article  CAS  Google Scholar 

  174. Ghosh R, Das S, Mallick SP, Beyene Z (2022) A review on the antimicrobial and antibiofilm activity of doped hydroxyapatite and its composites for biomedical applications. Mater Today Commun 31:103311. https://doi.org/10.1016/j.mtcomm.2022.103311

    Article  CAS  Google Scholar 

  175. Godoy-Gallardo M et al (2021) Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioactive Mater 6(12):4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033

    Article  CAS  Google Scholar 

  176. Peetsch A et al (2013) Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloids Surf, B 102:724–729. https://doi.org/10.1016/j.colsurfb.2012.09.040

    Article  CAS  Google Scholar 

  177. Shi C, Gao J, Wang M, Fu J, Wang D, Zhu Y (2015) Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity. Mater Sci Eng, C 55:497–505. https://doi.org/10.1016/j.msec.2015.05.078

    Article  CAS  Google Scholar 

  178. Naseri S, Lepry WC, Maisuria VB, Tufenkji N, Nazhat SN (2019) Development and characterization of silver-doped sol-gel-derived borate glasses with anti-bacterial activity. J Non-Cryst Solids 505:438–446. https://doi.org/10.1016/j.jnoncrysol.2018.11.026

    Article  ADS  CAS  Google Scholar 

  179. Barker E, Shepherd J, Asencio IO (2022) The use of cerium compounds as antimicrobials for biomedical applications. Molecules 27(9):2678. https://doi.org/10.3390/molecules27092678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Luo M, Shaitan K, Qu X, Bonartsev AP, Lei B (2022) Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Appl Mater Today 26:101304. https://doi.org/10.1016/j.apmt.2021.101304

    Article  Google Scholar 

  181. Raimondi S et al (2022) Investigation on the antimicrobial properties of cerium-doped bioactive glasses. J Biomed Mater Res, Part A 110(2):504–508. https://doi.org/10.1002/jbm.a.37289

    Article  CAS  Google Scholar 

  182. Qi M et al (2020) Cerium and its oxidant-based nanomaterials for antibacterial applications: a state-of-the-art review. Front Mater 7:213. https://doi.org/10.3389/fmats.2020.00213

    Article  ADS  Google Scholar 

  183. Prefac G-A et al (2020) CeO2 containing thin films as bioactive coatings for orthopaedic implants. Coatings 10(7):642. https://doi.org/10.3390/coatings10070642

    Article  CAS  Google Scholar 

  184. Nicolini V et al (2015) Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J Phys Chem B 119(10):4009–4019. https://doi.org/10.1021/jp511737b

    Article  CAS  PubMed  Google Scholar 

  185. Goh Y-F, Alshemary AZ, Akram M, Kadir MRA, Hussain R (2014) In-vitro characterization of antibacterial bioactive glass containing ceria. Ceram Int 40(1):729–737. https://doi.org/10.1016/j.ceramint.2013.06.062

    Article  CAS  Google Scholar 

  186. Youness RA, Taha MA, El-Kheshen AA, El-Faramawy N, Ibrahim M (2019) In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater Res Express 6(7):075212. https://doi.org/10.1088/2053-1591/ab15b5

    Article  ADS  CAS  Google Scholar 

  187. Atkinson I et al (2022) Cerium-containing mesoporous bioactive glasses (MBGs)-derived scaffolds with drug delivery capability for potential tissue engineering applications. Pharmaceutics 14(6):1169. https://doi.org/10.3390/pharmaceutics14061169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Garner J, Heppell P (2005) Cerium nitrate in the management of burns. Burns 31(5):539–547. https://doi.org/10.1016/j.burns.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  189. Cobrado L, Silva-Dias A, Azevedo M, Pina-Vaz C, Rodrigues A (2013) In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections. J Antimicrob Chemother 68(1):126–130. https://doi.org/10.1093/jac/dks376

    Article  CAS  PubMed  Google Scholar 

  190. Farag MM, Al-Rashidy ZM, Ahmed MM (2019) In vitro drug release behavior of Ce-doped nano-bioactive glass carriers under oxidative stress. J Mater Sci - Mater Med 30:1–15. https://doi.org/10.1007/s10856-019-6220-3

    Article  CAS  Google Scholar 

  191. Kazemian Z, Varzandeh M, Labbaf S (2021) A facile synthesis of mono dispersed spherical silver doped bioactive glass nanoparticle. J Mater Sci - Mater Med 32:1–6. https://doi.org/10.1007/s10856-021-06496-9

    Article  CAS  Google Scholar 

  192. Taye MB, Ningsih HS, Shih S-J (2023) Antibacterial and in vitro bioactivity studies of silver-doped, cerium-doped, and silver–cerium co-doped 80S mesoporous bioactive glass particles via spray pyrolysis. Appl Sci 13(23):12637. https://doi.org/10.3390/app132312637

    Article  CAS  Google Scholar 

  193. Liu J et al (2022) Rapid hemostasis and excellent antibacterial cerium-containing mesoporous bioactive glass/chitosan composite sponge for hemostatic material. Mater Today Chem 23:100735. https://doi.org/10.1016/j.mtchem.2021.100735

    Article  CAS  Google Scholar 

  194. Zhu H, Zheng K, Boccaccini AR (2021) Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomater 129:1–17. https://doi.org/10.1016/j.actbio.2021.05.007

    Article  CAS  PubMed  Google Scholar 

  195. Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46(6):1940–1945. https://doi.org/10.1128/aac.46.6.1940-1945.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Moghanian A, Zohourfazeli M, Tajer MHM (2020) The effect of zirconium content on in vitro bioactivity, biological behavior and antibacterial activity of sol-gel derived 58S bioactive glass. J Non-Cryst Solids 546:120262. https://doi.org/10.1016/j.jnoncrysol.2020.120262

    Article  CAS  Google Scholar 

  197. Akhtach S, Tabia Z, Bricha M, El Mabrouk K (2021) Structural characterization, in vitro bioactivity, and antibacterial evaluation of low silver-doped bioactive glasses. Ceram Int 47(20):29036–29046. https://doi.org/10.1016/j.ceramint.2021.07.066

    Article  CAS  Google Scholar 

  198. Balamurugan A et al (2008) An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dental Mater 24(10):1343–1351. https://doi.org/10.1016/j.dental.2008.02.015

    Article  CAS  Google Scholar 

  199. Huang Y-C, Lin T-Y, Huang S-C, Yang T-Y, Shih C-J (2022) Copper-enhanced silver releasing from bimetal-containing bioactive glass (AgCu/80S) elicits antibacterial efficacy against drug-resistant Staphylococcus aureus. J Non-Cryst Solids 584:121509. https://doi.org/10.1016/j.jnoncrysol.2022.121509

    Article  CAS  Google Scholar 

  200. Tabia Z, Akhtach S, Mabrouk KE, Bricha M, Nouneh K, Ballamurugan A (2020) Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: investigation of in vitro bioactivity and antibacterial activities. Biomed Glasses 6(1):10–22. https://doi.org/10.1515/bglass-2020-0002

    Article  Google Scholar 

  201. Tseng C-F, Fei Y-C, Chou Y-J (2020) Investigation of in vitro bioactivity and antibacterial activity of manganese-doped spray pyrolyzed bioactive glasses. J Non-Cryst Solids 549:120336. https://doi.org/10.1016/j.jnoncrysol.2020.120336

    Article  CAS  Google Scholar 

  202. Shih S-J, Chen C-Y, Lin Y-C, Lee J-C, Chung R-J (2016) Investigation of bioactive and antibacterial effects of graphene oxide-doped bioactive glass. Adv Powder Technol 27(3):1013–1020. https://doi.org/10.1016/j.apt.2016.04.016

    Article  CAS  Google Scholar 

  203. Nawaz Q et al (2018) Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications. J Mater Sci - Mater Med 29:1–13. https://doi.org/10.1007/s10856-018-6070-4

    Article  CAS  Google Scholar 

  204. Moghanian A, Zohourfazeli M, Tajer MHM, Miri Z, Hosseini S, Rashvand A (2021) Preparation, characterization and in vitro biological response of simultaneous co-substitution of Zr+ 4/Sr+ 2 58S bioactive glass powder. Ceram Int 47(17):23762–23769. https://doi.org/10.1016/j.ceramint.2020.11.139

    Article  CAS  Google Scholar 

  205. Hu H, Zhang W, Qiao Y-Q, Jiang X-Y, Liu X, Ding C (2012) Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater 8(2):904–915. https://doi.org/10.1016/j.actbio.2011.09.031

    Article  CAS  PubMed  Google Scholar 

  206. Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295(5557):1009–1014. https://doi.org/10.1126/science.1069210

    Article  ADS  CAS  PubMed  Google Scholar 

  207. Kanczler J, Oreffo R (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15(2):100–114. https://doi.org/10.22203/ecm.v015a08

    Article  CAS  PubMed  Google Scholar 

  208. Pereira RD, De Long NE, Wang RC, Yazdi FT, Holloway AC, Raha S (2015) "Angiogenesis in the placenta: the role of reactive oxygen species signaling". BioMed Res Int 2015. https://doi.org/10.1155/2015/814543

  209. Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29(7):1257–1265. https://doi.org/10.1016/j.jeurceramsoc.2008.08.002

    Article  CAS  Google Scholar 

  210. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  211. Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21(21):R877–R883. https://doi.org/10.1016/j.cub.2011.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Grubman A, White AR (2014) Copper as a key regulator of cell signalling pathways. Expert Rev Mol Med 16:e11. https://doi.org/10.1017/erm.2014.11

    Article  CAS  PubMed  Google Scholar 

  213. Devi SB, Dhivya AM, Sulochana K (2016) Copper transporters and chaperones: their function on angiogenesis and cellular signalling. J Biosci 41:487–496. https://doi.org/10.1007/s12038-016-9629-6

    Article  CAS  Google Scholar 

  214. Cucci LM, Satriano C, Marzo T, La Mendola D (2021) Angiogenin and copper crossing in wound healing. Int J Mol Sci 22(19):10704. https://doi.org/10.3390/ijms221910704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wu C et al (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433. https://doi.org/10.1016/j.biomaterials.2012.09.066

    Article  CAS  PubMed  Google Scholar 

  216. Stanić V (2017) "Variation in properties of bioactive glasses after surface modification". Clinical Applications of Biomaterials: State-of-the-Art Progress, Trends, and Novel Approaches pp 35–63. https://doi.org/10.1007/978-3-319-56059-5_2

  217. Bejarano J, Caviedes P, Palza H (2015) Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater 10(2):025001. https://doi.org/10.1088/1748-6041/10/2/025001

    Article  ADS  CAS  PubMed  Google Scholar 

  218. Cacciotti I (2017) Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J Mater Sci 52(15):8812–8831. https://doi.org/10.1007/s10853-017-1010-0

    Article  ADS  CAS  Google Scholar 

  219. Azevedo M, Jell G, O’donnell M, Law R, Hill R, Stevens M (2010) Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 20(40):8854–8864. https://doi.org/10.1039/C0JM01111H

    Article  CAS  Google Scholar 

  220. Hoppe A et al (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6(4):2865–2877. https://doi.org/10.1021/am405354y

    Article  CAS  PubMed  Google Scholar 

  221. Kargozar S et al (2016) Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering. J Non-Cryst Solids 449:133–140. https://doi.org/10.1016/j.jnoncrysol.2016.07.025

    Article  ADS  CAS  Google Scholar 

  222. Vyas VK, Sampath Kumar A, Singh S, Pyare R (2016) Effect of cobalt oxide substitution on mechanical behaviour and elastic properties of bioactive glass and glass-ceramics. Trans Indian Ceramic Soc 75(1):12–19. https://doi.org/10.1080/0371750X.2016.1149098

    Article  CAS  Google Scholar 

  223. Wu C et al (2012) Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33(7):2076–2085. https://doi.org/10.1016/j.biomaterials.2011.11.042

    Article  CAS  PubMed  Google Scholar 

  224. Hoppe A et al (2015) In vitro cell response to Co-containing 1393 bioactive glass. Mater Sci Eng, C 57:157–163. https://doi.org/10.1016/j.msec.2015.07.014

    Article  CAS  Google Scholar 

  225. Zhou Y et al (2017) Strategies to direct vascularisation using mesoporous bioactive glass-based biomaterials for bone regeneration. Int Mater Rev 62(7):392–414. https://doi.org/10.1080/09506608.2016.1266744

    Article  CAS  Google Scholar 

  226. Albulescu R et al (2019) Comprehensive in vitro testing of calcium phosphate-based bioceramics with orthopedic and dentistry applications. Materials 12(22):3704. https://doi.org/10.3390/ma12223704

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wang Y, Li Y, Liu D (2023) Erythropoietin promoted intraplaque angiogenesis by PI3K/AKT/mTOR signaling pathway in atherosclerosis. Tissue Cell 82:102084. https://doi.org/10.1016/j.tice.2023.102084

    Article  CAS  PubMed  Google Scholar 

  228. Wu Z et al (2020) Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng 11:2041731420967791. https://doi.org/10.1177/2041731420967791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Luo X, Xiao D, Zhang C, Wang G (2022) The roles of exosomes upon metallic ions stimulation in bone regeneration. J Funct Biomater 13(3):126. https://doi.org/10.3390/jfb13030126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Battafarano G et al (2021) Strategies for bone regeneration: from graft to tissue engineering. Int J Mol Sci 22(3):1128. https://doi.org/10.3390/ijms22031128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sheng X et al (2023) "Advanced applications of strontium-containing biomaterials in bone tissue engineering". Mater Today Bio 100636. https://doi.org/10.1016/j.mtbio.2023.100636

  232. Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N (2022) Strontium functionalization of biomaterials for bone tissue engineering purposes: a biological point of view. Materials 15(5):1724. https://doi.org/10.3390/ma15051724

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kaygili O, Keser S (2015) Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites. Mater Lett 141:161–164. https://doi.org/10.1016/j.matlet.2014.11.078

    Article  CAS  Google Scholar 

  234. Kamitakahara M, Ohtsuki C, Inada H, Tanihara M, Miyazaki T (2006) Effect of ZnO addition on bioactive CaO–SiO2–P2O5–CaF2 glass–ceramics containing apatite and wollastonite. Acta Biomater 2(4):467–471. https://doi.org/10.1016/j.actbio.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  235. Kalita SJ, Bhatt HA (2007) Nanocrystalline hydroxyapatite doped with magnesium and zinc: synthesis and characterization. Mater Sci Eng, C 27(4):837–848. https://doi.org/10.1016/j.msec.2006.09.036

    Article  CAS  Google Scholar 

  236. Mercier NR, Costantino HR, Tracy MA, Bonassar LJ (2005) Poly (lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Biomaterials 26(14):1945–1952. https://doi.org/10.1016/j.biomaterials.2004.06.030

    Article  CAS  PubMed  Google Scholar 

  237. Day RM, Boccaccini AR (2005) Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J Biomed Mater Res Part A 73(1):73–79. https://doi.org/10.1002/jbm.a.30262

    Article  CAS  Google Scholar 

  238. Vitale-Brovarone C et al (2007) Development of glass–ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater 3(2):199–208. https://doi.org/10.1016/j.actbio.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  239. Watts S, Hill R, O’donnell M, Law R (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356(9–10):517–524. https://doi.org/10.1016/j.jnoncrysol.2009.04.074

    Article  ADS  CAS  Google Scholar 

  240. Greenleaf J, Cumbal L, Staina I, SenGupta A (2003) Abiotic As (III) oxidation by hydrated Fe (III) oxide (HFO) microparticles in a plug flow columnar configuration. Process Saf Environ Prot 81(2):87–98. https://doi.org/10.1205/095758203321832552

    Article  CAS  Google Scholar 

  241. Feyerabend F, Witte F, Kammal M, Willumeit R (2006) Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tissue Eng 12(12):3545–3556. https://doi.org/10.1089/ten.2006.12.3545

    Article  CAS  PubMed  Google Scholar 

  242. Ishikawa K, Miyamoto Y, Yuasa T, Ito A, Nagayama M, Suzuki K (2002) Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomaterials 23(2):423–428. https://doi.org/10.1016/S0142-9612(01)00121-1

    Article  CAS  PubMed  Google Scholar 

  243. Reinke J, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49(1):35–43. https://doi.org/10.1159/000339613

    Article  CAS  PubMed  Google Scholar 

  244. George B, Jeffrey EJ, Christopher EA (2006) The basic science of wound healing. Plast Reconstr Surg 117(SUPPLEMENT):12S-34S. https://doi.org/10.1097/01.prs.0000225430.42531.c2

    Article  CAS  Google Scholar 

  245. Azari Z et al (2023) Fabrication and characterization of cobalt-and copper-doped mesoporous borate bioactive glasses for potential applications in tissue engineering. Ceram Int 49(23):38773–38788. https://doi.org/10.1016/j.ceramint.2023.09.214

    Article  CAS  Google Scholar 

  246. Dziadek M, Zagrajczuk B, Menaszek E, Dziadek K, Cholewa-Kowalska K (2018) A simple way of modulating in vitro angiogenic response using Cu and Co-doped bioactive glasses. Mater Lett 215:87–90. https://doi.org/10.1016/j.matlet.2017.12.075

    Article  CAS  Google Scholar 

  247. Jana S, Datta P, Das H, Ghosh PR, Kundu B, Nandi SK (2022) Engineering vascularizing electrospun dermal grafts by integrating fish collagen and ion-doped bioactive glass. ACS Biomater Sci Eng 8(2):734–752. https://doi.org/10.1021/acsbiomaterials.1c01098

    Article  CAS  PubMed  Google Scholar 

  248. Boyd D, Carroll G, Towler MR, Freeman C, Farthing P, Brook I (2009) Preliminary investigation of novel bone graft substitutes based on strontium–calcium–zinc–silicate glasses. J Mater Sci - Mater Med 20:413–420. https://doi.org/10.1007/s10856-008-3569-0

    Article  CAS  PubMed  Google Scholar 

  249. Flores-Jacobo A, Aguilar-Reyes EA, León-Patiño CA (2022) "Effect of dopants on the physical, mechanical, and biological properties of porous scaffolds for bone tissue engineering". Biomed Mater Devices pp 1–22. https://doi.org/10.1007/s44174-022-00020-5

  250. Kozon D, Zheng K, Boccardi E, Liu Y, Liverani L, Boccaccini AR (2016) Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification. Materials 9(4):225. https://doi.org/10.3390/ma9040225

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  251. Zheng K, Boccaccini AR (2017) Sol-gel processing of bioactive glass nanoparticles: a review. Adv Colloid Interface Sci 249:363–373. https://doi.org/10.1016/j.cis.2017.03.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance the National Taiwan University of Science and Technology’s Department of Materials Science and Engineering and NGB lab students provided.

Funding

There was no external funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Ju Shih.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taye, M.B., Ningsih, H.S. & Shih, SJ. Exploring the advancements in surface-modified bioactive glass: enhancing antibacterial activity, promoting angiogenesis, and modulating bioactivity. J Nanopart Res 26, 28 (2024). https://doi.org/10.1007/s11051-024-05935-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05935-2

Keywords

Navigation