Skip to main content
Log in

Colorimetric and fluorescent sensors based on nanomaterials for the detection of dipicolinic acid: a comprehensive review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bacillus anthracis, a formidable Gram-positive bacterium, stands as one of the most notorious and enigmatic pathogens known to mankind. Its distinct characteristics have captured the attention of scientists and the collective human imagination for centuries. This bacterium is responsible for causing Anthrax, one of the world's most feared infectious diseases. Substantial endeavors have been undertaken since the 2001 anthrax attacks in the United States to develop effective methods for anthrax spore detection. These initiatives aim to swiftly and accurately identify the presence of anthrax spores to prevent the spread of the disease. The detection of Bacillus anthracis spores plays a critical role in maintaining biosecurity and preventing disease outbreaks. These spores contain a unique component called dipicolinic acid (DPA), which accounts for approximately 5–15% of the spore's dry mass. DPA is exclusively found in bacterial spores and serves as an ideal biomarker for the detection of Bacillus anthracis spores. Therefore, accurate detection of DPA plays a crucial role in understanding spore formation and bacterial identification. This review article summarized various types of nanomaterials, including metallic nanoparticles, carbon dots, quantum dots, metal–organic frameworks and other materials, that have been used for colorimetric and fluorescent sensing of DPA. Furthermore, this review article also provides information about the sensing mechanism, detection limit, selectivity, pH and practical applications of the sensors reported in the literature. We hope that this article will inspire interest in the promising research area of nanomaterials-based sensors for the recognition of DPA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Kamal SM, Rashid AM, Bakar MA, Ahad MA (2011) Anthrax: an update, Asian Pac. J Trop Biomed 1:496–501. https://doi.org/10.1016/S2221-1691(11)60109-3

    Article  CAS  Google Scholar 

  2. Kummerfeldt CE (2014) Raxibacumab: Potential role in the treatment of inhalational anthrax. Infect Drug Resist 7:101–109. https://doi.org/10.2147/IDR.S47305/DIDR_A_47305_MED0001.AVI

    Article  Google Scholar 

  3. Moayeri M, Leppla SH (2004) The roles of anthrax toxin in pathogenesis. Curr Opin Microbiol 7:19–24. https://doi.org/10.1016/J.MIB.2003.12.001

    Article  CAS  Google Scholar 

  4. Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J, Wu A, Alibek D, Bailey C, Alibek K (2002) Lethal toxin of Bacillus anthracis causes apoptosis of macrophages. Biochem Biophys Res Commun 293:349–355. https://doi.org/10.1016/S0006-291X(02)00227-9

    Article  CAS  Google Scholar 

  5. Jamie WE (2002) Anthrax: diagnosis, treatment, prevention. Prim Care Update Ob Gyns 9:117–121. https://doi.org/10.1016/S1068-607X(02)00100-2

    Article  Google Scholar 

  6. Sternbach G (2003) The history of anthrax. J Emerg Med 24:463–467. https://doi.org/10.1016/S0736-4679(03)00079-9

    Article  Google Scholar 

  7. Kamal SM, Rashid AM, Bakar MA, Ahad MA (2011) Anthrax: an update, Asian Pac. J. Trop Biomed 1:496. https://doi.org/10.1016/S2221-1691(11)60109-3

    Article  CAS  Google Scholar 

  8. D’Amelio E, Gentile B, Lista F, D’Amelio R (2015) Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. Environ Int 85:133–146. https://doi.org/10.1016/J.ENVINT.2015.09.009

    Article  Google Scholar 

  9. Luo Y, Zhang L, Zhang L, Yu B, Wang Y, Zhang W (2019) Multiporous terbium phosphonate coordination polymer microspheres as fluorescent probes for trace anthrax biomarker detection. ACS Appl Mater Interfaces 11:15998–16005. https://doi.org/10.1021/ACSAMI.9B01123/SUPPL_FILE/AM9B01123_SI_001.PDF

    Article  CAS  Google Scholar 

  10. Coggeshall KM, Lupu F, Ballard J, Metcalf JP, James JA, Farris D, Kurosawa S (2013) The sepsis model: an emerging hypothesis for the lethality of inhalation anthrax. J Cell Mol Med 17:914–920. https://doi.org/10.1111/JCMM.12075

    Article  CAS  Google Scholar 

  11. Arry L, Ush MB, Brams AHA, Nne A, Eall B, Aroline C, Ohnson CJ (2001) Index case of fatal inhalational anthrax due to bioterrorism in the United States. N Engl J Med 345:1607–1610. https://doi.org/10.1056/NEJMOA012948

    Article  Google Scholar 

  12. Huang CM, Foster KW, DeSilva TS, Van Kampen KR, Elmets CA, Tang DCC (2004) Identification of Bacillus anthracis proteins associated with germination and early outgrowth by proteomic profiling of anthrax spores. Proteomics 4:2653–2661. https://doi.org/10.1002/PMIC.200400831

    Article  CAS  Google Scholar 

  13. Pita R, Gunaratna R (2009) Anthrax as a biological weapon: From World War I to the Amerithrax Investigation 23:61–103. https://doi.org/10.1080/08850600903143304

  14. Pacheco M, Dikec J, Winckler P, Coelho C, Perrier-Cornet JM (2022) Spectroscopic and microscopic characterization of dipicolinic acid and its salt photoproducts – A UVc effect study on DPA in solution and in bacterial spores. Spectrochim Acta Part A Mol Biomol Spectrosc 280:121502. https://doi.org/10.1016/J.SAA.2022.121502

    Article  CAS  Google Scholar 

  15. Canter DA (2007) Addressing residual risk issues at anthrax cleanups: How clean is safe? 68:1017–1032. https://doi.org/10.1080/15287390590912621

  16. Hueffer K, Drown D, Romanovsky V, Hennessy T (2020) Factors contributing to anthrax outbreaks in the circumpolar north. EcoHealth 17:174–180. https://doi.org/10.1007/S10393-020-01474-Z/METRICS

    Article  Google Scholar 

  17. Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Bustos Carrillo FA, Colwell R, Easterday WR, Ganz HH, Kamath PL, Økstad OA, Turner WC, Kolstø AB, Stenseth NC (2008) Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biol Rev 93:1813–1831. https://doi.org/10.1111/BRV.12420

    Article  Google Scholar 

  18. Kamboyi HK, de Garine-Wichatitsky M, Hang’ombe MB, Munyeme M (2019) Risk mapping and eco-anthropogenic assessment of anthrax in the upper Zambezi basin. Vet Med Sci 5:419–427. https://doi.org/10.1002/VMS3.168

    Article  Google Scholar 

  19. Muturi M, Gachohi J, Mwatondo A, Lekolool I, Gakuya F, Bett A, Osoro E, Bitek A, Thumbi SM, Munyua P, Oyas H, Njagi ON, Bett B, Njenga MK (2018) Recurrent anthrax outbreaks in humans, livestock, and wildlife in the same locality, Kenya, 2014–2017. Am J Trop Med Hyg 99:833. https://doi.org/10.4269/AJTMH.18-0224

    Article  Google Scholar 

  20. Goodacre R, Shann B, Gilbert RJ, Timmins ÉM, McGovern AC, Alsberg BK, Kell DB, Logan NA (1999) Detection of the Dipicolinic acid biomarker in bacillus spores using curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127. https://doi.org/10.1021/AC990661I

    Article  Google Scholar 

  21. Fichtel J, Köster J, Scholz-Böttcher B, Sass H, Rullkötter J (2007) A highly sensitive HPLC method for determination of nanomolar concentrations of dipicolinic acid, a characteristic constituent of bacterial endospores. J Microbiol Methods 70:319–327. https://doi.org/10.1016/J.MIMET.2007.05.008

    Article  CAS  Google Scholar 

  22. Fichtel J, Sass H, Rullkötter J (2008) Assessment of spore contamination in pepper by determination of dipicolinic acid with a highly sensitive HPLC approach. Food Control 19:1006–1010. https://doi.org/10.1016/J.FOODCONT.2007.09.006

    Article  CAS  Google Scholar 

  23. Tabor MW, MacGee J, Holland JW (1976) Rapid determination of dipicolinic acid in the spores of Clostridium species by gas-liquid chromatography. Appl Environ Microbiol 31:25–28. https://doi.org/10.1128/AEM.31.1.25-28.1976

    Article  CAS  Google Scholar 

  24. He J, Luo X, Chen S, Cao L, Sun M, Yu Z (2003) Determination of spore concentration in Bacillus thuringiensis through the analysis of dipicolinate by capillary zone electrophoresis. J Chromatogr A 994:207–212. https://doi.org/10.1016/S0021-9673(03)00422-9

    Article  CAS  Google Scholar 

  25. Alhamami MAM, Algethami JS, Khan S (2023) A review on thiazole based colorimetric and fluorimetric chemosensors for the detection of heavy metal ions. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2023.2197073

    Article  Google Scholar 

  26. Khan S, Muhammad M, Kamran AW, Al-Saidi HM, Alharthi SS, Algethami JS (2023) An ultrasensitive colorimetric and fluorescent “turn-on” chemosensor based on Schiff base for the detection of Cu2+ in the aqueous medium. Environ Monit Assess 195. https://doi.org/10.1007/S10661-023-11260-3

  27. Al-Saidi HM, Khan S (2022) A review on organic fluorimetric and colorimetric chemosensors for the detection of Ag(I) Ions 1–27. https://doi.org/10.1080/10408347.2022.2133561

  28. Khan S, Muhammad M, Algethami JS, Al-Saidi HM, Almahri A, Hassanian AA (2022) Synthesis, characterization and applications of schiff base chemosensor for determination of Cr(III) Ions. J Fluoresc. https://doi.org/10.1007/S10895-022-02990-7

    Article  Google Scholar 

  29. Khan S, Muhammad M, Al-Saidi HM, Hassanian AA, Alharbi W, Alharbi KH (2022) Synthesis, characterization and applications of schiff base chemosensor for determination of Cu2+ ions. J Saudi Chem Soc 26:101503. https://doi.org/10.1016/J.JSCS.2022.101503

    Article  CAS  Google Scholar 

  30. Muhammad M, Khan S, Shehzadi SA, Gul Z, Al-Saidi HM, Waheed Kamran A, Alhumaydhi FA (2022) Recent advances in colorimetric and fluorescent chemosensors based on thiourea derivatives for metallic cations: A review. Dye Pigment 205. https://doi.org/10.1016/J.DYEPIG.2022.110477

  31. Al-Saidi HM, Khan S (2022) Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: A review. 1–17. https://doi.org/10.1080/10408347.2022.2063017

  32. Khan S, Chen X, Almahri A, Allehyani ES, Alhumaydhi FA, Ibrahim MM, Ali S (2021) Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review. J Environ Chem Eng 9:106381. https://doi.org/10.1016/J.JECE.2021.106381

    Article  CAS  Google Scholar 

  33. Mohammad Abu-Taweel G, Ibrahim MM, Khan S, Al-Saidi HM, Alshamrani M, Alhumaydhi FA, Alharthi SS (2022) Medicinal importance and chemosensing applications of pyridine derivatives: A review. Crit Rev Anal Chem https://doi.org/10.1080/10408347.2022.2089839

  34. Mohammad Abu-Taweel G, Alharthi SS, Al-Saidi HM, Babalghith AO, Ibrahim MM, Khan S (2023) Heterocyclic organic compounds as a fluorescent chemosensor for cell imaging applications: A review. Crit Rev Anal Chem 1–16. https://doi.org/10.1080/10408347.2023.2186695

  35. Yu L, Song Z, Peng J, Yang M, Zhi H, He H (2020) Progress of gold nanomaterials for colorimetric sensing based on different strategies. TrAC Trends Anal Chem 127:115880. https://doi.org/10.1016/J.TRAC.2020.115880

    Article  CAS  Google Scholar 

  36. Terra IAA, Mercante LA, Andre RS, Correa DS (2017) Fluorescent and colorimetric electrospun nanofibers for heavy-metal sensing. Biosens 7:61. https://doi.org/10.3390/BIOS7040061

    Article  Google Scholar 

  37. Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433. https://doi.org/10.1039/C0NR00887G

    Article  CAS  Google Scholar 

  38. Guo Y, Zhao W (2019) In situ formed nanomaterials for colorimetric and fluorescent sensing. Coord Chem Rev 387:249–261. https://doi.org/10.1016/J.CCR.2019.02.019

    Article  CAS  Google Scholar 

  39. Sun J, Lu Y, He L, Pang J, Yang F, Liu Y (2020) Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. TrAC Trends Anal Chem 122:115754. https://doi.org/10.1016/J.TRAC.2019.115754

    Article  CAS  Google Scholar 

  40. Huang C, Ma R, Luo Y, Shi G, Deng J, Zhou T (2020) Stimulus response of TPE-TS@Eu/GMP ICPs: Toward colorimetric sensing of an anthrax biomarker with double ratiometric fluorescence and its coffee ring test kit for point-of-use application. Anal Chem 92:12934–12942. https://doi.org/10.1021/ACS.ANALCHEM.0C01570/SUPPL_FILE/AC0C01570_SI_001.PDF

    Article  CAS  Google Scholar 

  41. Baig MMF, Chen YC (2018) Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples. Anal Bioanal Chem 410:1805–1815. https://doi.org/10.1007/S00216-017-0836-2/METRICS

    Article  CAS  Google Scholar 

  42. Negi DPS (2022) Recent developments in the colorimetric sensing of biological molecules using gold nanoparticles-based probes. Talanta Open 6:100122. https://doi.org/10.1016/J.TALO.2022.100122

    Article  Google Scholar 

  43. Donmez M, Yilmaz MD, Kilbas B (2017) Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles. J Hazard Mater 324:593–598. https://doi.org/10.1016/J.JHAZMAT.2016.11.030

    Article  CAS  Google Scholar 

  44. Li J, Shen Y, Gu Q, Liu H, Heng H, Wang Z, Wei J, Shen P (2023) Fluorescence on and off sensing platform based on europium nanosheets for the detection of DPA and Cu2+ ions, Spectrochim. Acta Part A Mol Biomol Spectrosc 294:122522. https://doi.org/10.1016/J.SAA.2023.122522

    Article  CAS  Google Scholar 

  45. Song Y, Chen J, Hu D, Liu F, Li P, Li H, Chen S, Tan H, Wang L (2015) Ratiometric fluorescent detection of biomakers for biological warfare agents with carbon dots chelated europium-based nanoscale coordination polymers. Sensors Actuators B Chem 221:586–592. https://doi.org/10.1016/J.SNB.2015.07.008

    Article  CAS  Google Scholar 

  46. Zhang J, Chen H, Xu K, Deng D, Zhang Q, Luo L (2023) Current Progress of Ratiometric Fluorescence Sensors Based on Carbon Dots in Foodborne Contaminant Detection. Biosens 13:233. https://doi.org/10.3390/BIOS13020233

    Article  CAS  Google Scholar 

  47. Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23. https://doi.org/10.1016/J.TEAC.2017.02.001

    Article  CAS  Google Scholar 

  48. Peng F, Su Y, Zhong Y, Fan C, Lee ST, He Y (2014) Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res 47:612–623. https://doi.org/10.1021/AR400221G/ASSET/IMAGES/MEDIUM/AR-2013-00221G_0011.GIF

    Article  CAS  Google Scholar 

  49. Gajanan K, Tijare SN (2018) Applications of nanomaterials. Mater Today Proc 5:1093–1096. https://doi.org/10.1016/J.MATPR.2017.11.187

    Article  CAS  Google Scholar 

  50. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot 35:64–70. https://doi.org/10.1016/J.CROPRO.2012.01.007

    Article  CAS  Google Scholar 

  51. Zhang Y, Wu M, Wu M, Zhu J, Zhang X (2018) Multifunctional carbon-based nanomaterials: Applications in biomolecular imaging and therapy. ACS Omega 3:9126–9145. https://doi.org/10.1021/ACSOMEGA.8B01071/ASSET/IMAGES/LARGE/AO-2018-010715_0015.JPEG

    Article  CAS  Google Scholar 

  52. Mandal G, Ganguly T (2011) Applications of nanomaterials in the different fields of photosciences. Indian J Phys 85:1229–1245. https://doi.org/10.1007/S12648-011-0149-9/METRICS

    Article  CAS  Google Scholar 

  53. Lara S, Perez-Potti A (2018) Applications of nanomaterials for immunosensing. Biosens 8:104. https://doi.org/10.3390/BIOS8040104

    Article  CAS  Google Scholar 

  54. Taylor-Pashow KML, Della Rocca J, Huxford RC, Lin W (2010) Hybrid nanomaterials for biomedical applications. Chem Commun 46:5832–5849. https://doi.org/10.1039/C002073G

    Article  CAS  Google Scholar 

  55. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG (2019) The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 119:4819–4880. https://doi.org/10.1021/ACS.CHEMREV.8B00733/ASSET/IMAGES/LARGE/CR-2018-00733B_0030.JPEG

    Article  CAS  Google Scholar 

  56. Al Mamun MA, Yuce MR (2020) Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv Funct Mater 30:2005703. https://doi.org/10.1002/ADFM.202005703

    Article  Google Scholar 

  57. Ray PC (2010) Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 110:5332–5365. https://doi.org/10.1021/CR900335Q/ASSET/CR900335Q.FP.PNG_V03

    Article  CAS  Google Scholar 

  58. Manusha P, Yadav S, Satija J, Senthilkumar S (2021) Designing electrochemical NADH sensor using silver nanoparticles/phenothiazine nanohybrid and investigation on the shape dependent sensing behavior. Sensors Actuators B Chem 347:130649. https://doi.org/10.1016/J.SNB.2021.130649

    Article  CAS  Google Scholar 

  59. Stephen Inbaraj B, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24:15–28. https://doi.org/10.1016/J.JFDA.2015.05.001

    Article  CAS  Google Scholar 

  60. Gan X, Zhao H, Schirhagl R, Quan X (2018) Two-dimensional nanomaterial based sensors for heavy metal ions. Microchim Acta 185(10):1–30. https://doi.org/10.1007/S00604-018-3005-1

    Article  CAS  Google Scholar 

  61. Teng X, Qi L, Liu T, Li L, Lu C (2023) Nanomaterial-based chemiluminescence systems for tracing of reactive oxygen species in biosensors. TrAC Trends Anal Chem 162:117020. https://doi.org/10.1016/J.TRAC.2023.117020

    Article  CAS  Google Scholar 

  62. Liu X, Huang L, Qian K (2021) Nanomaterial-based electrochemical sensors: mechanism, preparation, and application in biomedicine. Adv NanoBiomed Res 1:2000104. https://doi.org/10.1002/ANBR.202000104

    Article  CAS  Google Scholar 

  63. Patel M, Agrawal M, Srivastava A (2022) Signal amplification strategies in electrochemical biosensors via antibody immobilization and nanomaterial-based transducers. Mater Adv 3:8864–8885. https://doi.org/10.1039/D2MA00427E

    Article  Google Scholar 

  64. Yang L, Zhang S, Liu X, Tang Y, Zhou Y, Wong DKY (2020) Detection signal amplification strategies at nanomaterial-based photoelectrochemical biosensors. J Mater Chem B 8:7880–7893. https://doi.org/10.1039/D0TB01191F

    Article  CAS  Google Scholar 

  65. Sui X, Downing JR, Hersam MC, Chen J (2021) Additive manufacturing and applications of nanomaterial-based sensors. Mater Today 48:135–154. https://doi.org/10.1016/J.MATTOD.2021.02.001

    Article  CAS  Google Scholar 

  66. Rowland CE, Brown CW, Delehanty JB, Medintz IL (2016) Nanomaterial-based sensors for the detection of biological threat agents. Mater Today 19:464–477. https://doi.org/10.1016/J.MATTOD.2016.02.018

    Article  CAS  Google Scholar 

  67. Xu X, Niu X, Li X, Li Z, Du D, Lin Y (2020) Nanomaterial-based sensors and biosensors for enhanced inorganic arsenic detection: A functional perspective. Sensors Actuators B Chem 315:128100. https://doi.org/10.1016/J.SNB.2020.128100

    Article  CAS  Google Scholar 

  68. Nsibande SA, Montaseri H, Forbes PBC (2019) Advances in the application of nanomaterial-based sensors for detection of polycyclic aromatic hydrocarbons in aquatic systems. TrAC Trends Anal Chem 115:52–69. https://doi.org/10.1016/J.TRAC.2019.03.029

    Article  CAS  Google Scholar 

  69. Zhang W, Asiri AM, Liu D, Du D, Lin Y (2014) Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Anal Chem 54:1–10. https://doi.org/10.1016/J.TRAC.2013.10.007

    Article  Google Scholar 

  70. Huber J, Leopold K (2016) Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters. TrAC Trends Anal Chem 80:280–292. https://doi.org/10.1016/J.TRAC.2015.09.007

    Article  CAS  Google Scholar 

  71. Lee SH, Sung JH, Park TH (2011) Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann Biomed Eng 40(6):1384–1397. https://doi.org/10.1007/S10439-011-0457-4

    Article  Google Scholar 

  72. Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manage 206:749–762. https://doi.org/10.1016/J.JENVMAN.2017.11.037

    Article  CAS  Google Scholar 

  73. Manikandan VS, Adhikari BR, Chen A (2018) Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 143:4537–4554. https://doi.org/10.1039/C8AN00497H

    Article  CAS  Google Scholar 

  74. O’Brien C, Varty K, Ignaszak A (2021) The electrochemical detection of bioterrorism agents: a review of the detection, diagnostics, and implementation of sensors in biosafety programs for Class A bioweapons. Microsystems Nanoeng 7(1):1–19. https://doi.org/10.1038/s41378-021-00242-5

    Article  CAS  Google Scholar 

  75. Su S, Wu W, Gao J, Lu J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22:18101–18110. https://doi.org/10.1039/C2JM33284A

    Article  CAS  Google Scholar 

  76. Maduraiveeran G, Ramaraj R (2017) Gold nanoparticle-based sensing platform of hydrazine, sulfite, and nitrite for food safety and environmental monitoring. J Anal Sci Technol 8:1–10. https://doi.org/10.1186/S40543-017-0113-1/TABLES/1

    Article  Google Scholar 

  77. Hashemian H, Ghaedi M, Dashtian K, Mosleh S, Hajati S, Razmjoue D, Khan S (2023) Cellulose acetate/MOF film-based colorimetric ammonia sensor for non-destructive remote monitoring of meat product spoilage. Int J Biol Macromol 249:126065. https://doi.org/10.1016/J.IJBIOMAC.2023.126065

    Article  CAS  Google Scholar 

  78. Li YX, Qin HY, Hu C, Sun MM, Li PY, Liu H, Li JC, Li ZB, Wu LD, Zhu J (2022) Research Progress of Nanomaterials-Based Sensors for Food Safety. J Anal Test 6:431–440. https://doi.org/10.1007/S41664-022-00235-X/METRICS

    Article  Google Scholar 

  79. Nurfatihah Z, Siddiquee S (2019) Nanotechnology: Recent trends in food safety, quality and market analysis. Nanotechnol Appl Energy, Drug Food 283–293. https://doi.org/10.1007/978-3-319-99602-8_14/COVER

  80. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24. https://doi.org/10.1016/J.JCIS.2011.07.017

    Article  CAS  Google Scholar 

  81. Han A, Hao S, Yang Y, Li X, Luo X, Fang G, Liu J, Wang S (2020) Perspective on recent developments of nanomaterial based fluorescent sensors: Applications in safety and quality control of food and beverages. J Food Drug Anal 28:486. https://doi.org/10.38212/2224-6614.1270

    Article  CAS  Google Scholar 

  82. Ayodele OO, Adesina AO, Pourianejad S, Averitt J, Ignatova T (2021) Recent advances in nanomaterial-based aptasensors in medical diagnosis and therapy. Nanomater 11:932. https://doi.org/10.3390/NANO11040932

    Article  CAS  Google Scholar 

  83. Pasinszki T, Krebsz M, Tung TT, Losic D (2017) Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors 17:1919. https://doi.org/10.3390/S17081919

    Article  Google Scholar 

  84. Sharma A, Sharma N, Kumari A, Lee HJ, Kim TY, Tripathi KM (2020) Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: A junction between material science and biology. Appl Mater Today 18:100467. https://doi.org/10.1016/J.APMT.2019.100467

    Article  Google Scholar 

  85. Larguinho M, Baptista PV (2012) Gold and silver nanoparticles for clinical diagnostics — From genomics to proteomics. J Proteomics 75:2811–2823. https://doi.org/10.1016/J.JPROT.2011.11.007

    Article  CAS  Google Scholar 

  86. Kanjanawarut R, Su X (2009) Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 81:6122–6129. https://doi.org/10.1021/AC900525K/SUPPL_FILE/AC900525K_SI_001.PDF

    Article  CAS  Google Scholar 

  87. Li ZY, Xia Y (2010) Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 10:243–249. https://doi.org/10.1021/NL903409X/ASSET/IMAGES/MEDIUM/NL-2009-03409X_0005.GIF

    Article  Google Scholar 

  88. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657–1687. https://doi.org/10.3390/S120201657

    Article  CAS  Google Scholar 

  89. Van Dijk MA, Tchebotareva AL, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognet L, Lounis B (2006) Absorption and scattering microscopy of single metal nanoparticles. Phys Chem Chem Phys 8:3486–3495. https://doi.org/10.1039/B606090K

    Article  Google Scholar 

  90. Li X, Luo J, Jiang X, Yang M, Rasooly A (2021) Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Microchim Acta 188:1–8. https://doi.org/10.1007/S00604-020-04667-Z/METRICS

    Article  Google Scholar 

  91. Xiu LF, Huang KY, Zhu CT, Zhang Q, Peng HP, Xia XH, Chen W, Deng HH (2021) Rare-Earth Eu3+/Gold nanocluster ensemble-based fluorescent photoinduced electron transfer sensor for biomarker dipicolinic acid detection. Langmuir 37:949–956. https://doi.org/10.1021/ACS.LANGMUIR.0C03341/SUPPL_FILE/LA0C03341_SI_001.PDF

    Article  CAS  Google Scholar 

  92. Baig MMF, Chen Y-C (2019) Gold nanocluster-based fluorescence sensing probes for detection of dipicolinic acid. Analyst 144:3289–3296. https://doi.org/10.1039/C9AN00240E

    Article  CAS  Google Scholar 

  93. Shao K, Wen S, Zhang M, Wang J, Ye S, Pan Z (2022) A ratiometric fluorescent nanoprobe based on ZIF-8@AuNCs–Tb for visual detection of 2,6-pyridinedicarboxylic acid. J Rare Earths 40:1165–1172. https://doi.org/10.1016/J.JRE.2021.08.005

    Article  CAS  Google Scholar 

  94. Yin S, Tong C (2021) Europium(III)-modified silver nanoparticles as ratiometric colorimetric and fluorescent dual-mode probes for selective detection of dipicolinic acid in bacterial spores and lake waters. ACS Appl Nano Mater 4:5469–5477. https://doi.org/10.1021/ACSANM.1C00838/SUPPL_FILE/AN1C00838_SI_001.PDF

    Article  CAS  Google Scholar 

  95. Tan H, Li Q, Ma C, Song Y, Xu F, Chen S, Wang L (2014) Lanthanide-functionalized silver nanoparticles for detection of an anthrax biomarker and test paper fabrication. J Nanoparticle Res 16:1–11. https://doi.org/10.1007/S11051-013-2151-Y/METRICS

    Article  CAS  Google Scholar 

  96. Shen J, Fan Z (2023) Ce3+-induced fluorescence amplification of copper nanoclusters based on aggregation-induced emission for specific sensing 2,6-pyridine dicarboxylic acid. J Fluoresc 33:135–144. https://doi.org/10.1007/S10895-022-03044-8/METRICS

    Article  CAS  Google Scholar 

  97. Xu J, Shen X, Jia L, Ge Z, Zhou D, Yang Y, Ma T, Luo Y, Zhu T (2019) GdPO 4 -based nanoprobe for bioimaging and selective recognition of dipicolinic acid and cysteine by a sensing ensemble approach. ACS Biomater Sci Eng 5:996–1004. https://doi.org/10.1021/ACSBIOMATERIALS.8B01126/SUPPL_FILE/AB8B01126_SI_001.PDF

    Article  CAS  Google Scholar 

  98. Li J, Qingyang Gu, Heng H, Wang Z, Jin H, He J (2022) A ratiometric luminescence nanoprobe based on layered terbium hydroxide nanosheets for quantitative detection of an anthrax biomarker. Sensors Diagnostics 1:198–204. https://doi.org/10.1039/D1SD00027F

    Article  Google Scholar 

  99. Ma YY, Wang ZJ, Qian DJ (2021) Ratiometric fluorescence detection of anthrax biomarker based on terbium (III) functionalized graphitic carbon nitride nanosheets. Talanta 230:122311. https://doi.org/10.1016/J.TALANTA.2021.122311

    Article  CAS  Google Scholar 

  100. Li Y, Li X, Wang D, Shen C, Yang M (2018) Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores. Microchim Acta 185:1–5. https://doi.org/10.1007/S00604-018-2978-0/METRICS

    Article  Google Scholar 

  101. Na M, Zhang S, Liu J, Ma S, Han Y, Wang Y, He Y, Chen H, Chen X (2020) Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. J Hazard Mater 386:121956. https://doi.org/10.1016/J.JHAZMAT.2019.121956

    Article  CAS  Google Scholar 

  102. Batool M, Junaid HM, Tabassum S, Kanwal F, Abid K, Fatima Z, Shah AT (2020) Metal ion detection by carbon dots—A review. 52:756–767. https://doi.org/10.1080/10408347.2020.1824117

  103. Shi X, Wei W, Fu Z, Gao W, Zhang C, Zhao Q, Deng F, Lu X (2019) Review on carbon dots in food safety applications. Talanta 194:809–821. https://doi.org/10.1016/J.TALANTA.2018.11.005

    Article  CAS  Google Scholar 

  104. Ji C, Zhou Y, Leblanc RM, Peng Z (2020) Recent developments of carbon dots in biosensing: A review. ACS Sensors 5:2724–2741. https://doi.org/10.1021/ACSSENSORS.0C01556/ASSET/IMAGES/MEDIUM/SE0C01556_0011.GIF

    Article  CAS  Google Scholar 

  105. Rong M, Deng X, Chi S, Huang L, Zhou Y, Shen Y, Chen X (2018) Ratiometric fluorometric determination of the anthrax biomarker 2,6-dipicolinic acid by using europium(III)-doped carbon dots in a test stripe. Microchim Acta 185:1–10. https://doi.org/10.1007/S00604-018-2741-6/METRICS

    Article  CAS  Google Scholar 

  106. Rong M, Liang Y, Zhao D, Chen B, Pan C, Deng X, Chen Y, He J (2018) A ratiometric fluorescence visual test paper for an anthrax biomarker based on functionalized manganese-doped carbon dots. Sensors Actuators B Chem 265:498–505. https://doi.org/10.1016/J.SNB.2018.03.094

    Article  CAS  Google Scholar 

  107. Liu ML, Bin Chen B, He JH, Li CM, Li YF, Huang CZ (2019) Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots. Talanta 191:443–448. https://doi.org/10.1016/J.TALANTA.2018.08.071

    Article  CAS  Google Scholar 

  108. Wang J, Li D, Qiu Y, Liu X, Huang L, Wen H, Hu J (2020) An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta 220:121377. https://doi.org/10.1016/J.TALANTA.2020.121377

    Article  CAS  Google Scholar 

  109. Zhou Q, Fang Y, Li J, Hong D, Zhu P, Chen S, Tan K (2021) A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Talanta 222:121548. https://doi.org/10.1016/J.TALANTA.2020.121548

    Article  CAS  Google Scholar 

  110. Heng H, Ma D, Gu Q, Li J, Jin H, Shen P, Wei J, Wang Z (2023) A core–shell structure ratiometric fluorescent probe based on carbon dots and Tb3+ for the detection of anthrax biomarker, Spectrochim. Acta Part A Mol Biomol Spectrosc 299:122793. https://doi.org/10.1016/J.SAA.2023.122793

    Article  CAS  Google Scholar 

  111. Molaei MJ (2020) Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal Methods 12:1266–1287. https://doi.org/10.1039/C9AY02696G

    Article  CAS  Google Scholar 

  112. Fang M, Chen M, Liu L, Li Y (2017) Applications of quantum dots in cancer detection and diagnosis: A review. J Biomed Nanotechnol 13:1–16. https://doi.org/10.1166/JBN.2017.2334

    Article  Google Scholar 

  113. Zou L, Gu Z, Sun M (2015) Review of the application of quantum dots in the heavy-metal detection. 97:477–490. https://doi.org/10.1080/02772248.2015.1050201

  114. Zhou Z, Gu J, Chen Y, Zhang X, Wu H, Qiao X (2019) Europium functionalized silicon quantum dots nanomaterials for ratiometric fluorescence detection of Bacillus anthrax biomarker, Spectrochim. Acta Part A Mol Biomol Spectrosc 212:88–93. https://doi.org/10.1016/J.SAA.2018.12.036

    Article  CAS  Google Scholar 

  115. Li X, Deng L, Ma F, Yang M (2020) A luminous off-on probe for the determination of 2,6-pyridinedicarboxylic acid as an anthrax biomarker based on water-soluble cadmium sulfide quantum dots. Microchim Acta 187:1–8. https://doi.org/10.1007/S00604-020-04272-0/METRICS

    Article  Google Scholar 

  116. Cao Y, Gong X, Li L, Li H, Zhang X, Guo DY, Wang F, Pan Q (2023) Xylenol orange-modified CdTe quantum dots as a fluorescent/colorimetric dual-modal probe for anthrax biomarker based on competitive coordination. Talanta 261:124664. https://doi.org/10.1016/J.TALANTA.2023.124664

    Article  CAS  Google Scholar 

  117. Manoj D, Rajendran S, Hoang TKA, Soto-Moscoso M (2022) The role of MOF based nanocomposites in the detection of phenolic compounds for environmental remediation- A review. Chemosphere 300:134516. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134516

    Article  CAS  Google Scholar 

  118. Sohrabi H, Ghasemzadeh S, Ghoreishi Z, Majidi MR, Yoon Y, Dizge N, Khataee A (2023) Metal-organic frameworks (MOF)-based sensors for detection of toxic gases: A review of current status and future prospects. Mater Chem Phys 299:127512. https://doi.org/10.1016/J.MATCHEMPHYS.2023.127512

    Article  CAS  Google Scholar 

  119. Wagner M, Andrew Lin KY, Da Oh W, Lisak G (2021) Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption – A mini review. J Hazard Mater 413:125325. https://doi.org/10.1016/J.JHAZMAT.2021.125325

    Article  CAS  Google Scholar 

  120. Shi K, Yang Z, Dong L, Yu B (2018) Dual channel detection for anthrax biomarker dipicolinic acid: The combination of an emission turn on probe and luminescent metal-organic frameworks. Sensors Actuators B Chem 266:263–269. https://doi.org/10.1016/J.SNB.2018.03.128

    Article  CAS  Google Scholar 

  121. Shen ML, Liu B, Xu L, Jiao H (2020) Ratiometric fluorescence detection of anthrax biomarker 2,6-dipicolinic acid using hetero MOF sensors through ligand regulation. J Mater Chem C 8:4392–4400. https://doi.org/10.1039/D0TC00364F

    Article  CAS  Google Scholar 

  122. Zhang X, Zhang W, Li G, Liu Q, Xu Y, Liu X (2020) A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)− functionalized UIO-67 metal-organic framework. Microchim Acta 187:1–7. https://doi.org/10.1007/S00604-020-4113-2/METRICS

    Article  Google Scholar 

  123. Zhao XY, Wang J, Hao HG, Yang H, Yang QS, Zhao WY (2021) A water-stable europium-MOF sensor for the selective, sensitive ratiometric fluorescence detection of anthrax biomarker. Microchem J 166:106253. https://doi.org/10.1016/J.MICROC.2021.106253

    Article  CAS  Google Scholar 

  124. Jia L, Chen X, Xu J, Li Y, Zhang L, Bi N, Zhao T (2022) Two birds with one stone: Visual colorful assessment of dipicolinic acid and Cu2+ by Ln-Mof hybrid attapulgite nano-probe. SSRN Electron J. https://doi.org/10.2139/SSRN.4070192

    Article  Google Scholar 

  125. Bao J, Mei J, Cheng X, Ren D, Xu G, Wei F, Sun Y, Hu Q, Cen Y (2021) A ratiometric lanthanide-free fluorescent probe based on two-dimensional metal-organic frameworks and carbon dots for the determination of anthrax biomarker. Microchim Acta 188:1–8. https://doi.org/10.1007/S00604-021-04701-8/METRICS

    Article  Google Scholar 

  126. Donmez M, Oktem HA, Yilmaz MD (2018) Ratiometric fluorescence detection of an anthrax biomarker with Eu3+-chelated chitosan biopolymers. Carbohydr Polym 180:226–230. https://doi.org/10.1016/J.CARBPOL.2017.10.039

    Article  CAS  Google Scholar 

  127. Qu S, Song N, Xu G, Jia Q (2019) A ratiometric fluorescent probe for sensitive detection of anthrax biomarker based on terbium-covalent organic polymer systems. Sensors Actuators B Chem 290:9–14. https://doi.org/10.1016/J.SNB.2019.03.110

    Article  CAS  Google Scholar 

  128. Lei H, Qi CX, Chen XB, Zhang T, Xu L, Liu B (2019) Ratiometric fluorescence determination of the anthrax biomarker 2,6-dipicolinic acid using a Eu3+/Tb3+-doped nickel coordination polymer. New J Chem 43:18259–18267. https://doi.org/10.1039/C9NJ04501E

    Article  CAS  Google Scholar 

  129. Liu X, Qiu Y, Li B, Li Z, Zhang Y, Wang J, Xiong Q (2020) Construction of lanthanide-containing ratiometric probe for facile anthrax biomarker detection, Spectrochim. Acta Part A Mol Biomol Spectrosc 240:118541. https://doi.org/10.1016/J.SAA.2020.118541

    Article  CAS  Google Scholar 

  130. Cetinkaya Y, Yurt MNZ, AvniOktem H, Yilmaz MD (2019) A Monostyryl Boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe for sequential sensing of copper (II) ions and dipicolinic acid as a biomarker of bacterial endospores. J Hazard Mater 377:299–304. https://doi.org/10.1016/J.JHAZMAT.2019.05.108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author extend their appreciation to the Deputyship for research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP22-20

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Y. Sabei.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabei, F.Y. Colorimetric and fluorescent sensors based on nanomaterials for the detection of dipicolinic acid: a comprehensive review. J Nanopart Res 25, 250 (2023). https://doi.org/10.1007/s11051-023-05881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05881-5

Keywords

Navigation