Skip to main content
Log in

Effect of Zr substitution on structural, electronic, thermodynamic and optical properties of \((\textrm{HfO}_2)_{\text{p}}\) clusters: a DFT study of \((\textrm{HfO}_2)_{\textrm{p}}\) and \(\textrm{Hf}_{\textrm{q}} \textrm{Zr}_{\text {r}} \textrm{O}_{2(\textrm{q}+\textrm{r})}\) clusters

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

First-principles calculations have been performed on \((\text {HfO}_2)_\text{ p }\) and \(\text {Hf}_{\text{ q }} \text {Zr}_{\text{ r }} \text {O}_{2(\text {q}+\text {r})}\) clusters using DFT and TDDFT. The effect of Zr-substitution on the structural, electronic, thermodynamic, and optical properties of \((\textrm{HfO}_2)_{\text{p}}\) clusters has been investigated using B3LYP and B3PW91 functionals with LANL2DZ basis set. The calculated properties depend upon geometry, type, and number of atoms present in the clusters. Zr-substitution in \((\text {HfO}_2)_{\text{p}}\) clusters leads to the reduced molecular mass of \(\text {Hf}_{\text{q}} \text{Zr}_{\text{r}} \text {O}_{2(\text {q}+\text{r})}\) clusters so that they can be used in making light weight semiconductor devices. \(\text {Hf}_{3} \text {Zr}_{2}\text{O}_{10}\) is found to be the most reactive after Zr-substitution in \((\text {HfO}_2)_5\) because of the minimum value of HOMO-LUMO gap. Zr-substitution in \((\text {HfO}_{2})_{5}\) increases the refractive index of \(\text {Hf}_{3} \text {Zr}_{2}\text{O}_{10}\), making it suitable for multi-layer antireflecting coatings. The dielectric constant of \(\text{Hf}_{3} \text {Zr}_{2}\text{O}_{10}\) has increased after Zr-substitution finding applications in the MOSFET industry. The absorption spectra can be tuned over the ultraviolet and visible regions depending upon the Zr-substitution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility

Not applicable.

References

  1. Yao C, Xu C-Q, Park I-H, Zhao M, Zhu Z, Li J, Hai X, Fang H, Zhang Y, Macam G, Teng J, Li L, Xu Q-H, Chuang FC, Lu J, Su C, Li J, Lu J (2020) Giant emission enhancement of solid-state gold nanoclusters by surface engineering. Angew Chem 59(21):8270

    Article  CAS  Google Scholar 

  2. Li M, Min X, Ye F, Li P, Cheng C, Zhao J (2019) First-principles study of phase stability and elastic properties in metastable Ti-Mo alloys with cluster structure. Mol Simul 45(1):26

    Article  Google Scholar 

  3. Zhang Y, Li S, Liu H, Long W, Zhang X-D (2020) Enzyme-like properties of gold clusters for biomedical application. Front Chem 8

  4. Mahdavifar Z, Afshari M, Bagheri A, Arab A (2020) Systematic investigation of structure and optoelectronic properties of \(\text{ Ge}_\text{ n }\) (n=3-20), \(\text{ MGe}_9\) (M=Ga, Si, Sn, As) and \(\text{ Ga}_\text{ x }\text{ Ge}_{(10-\text{ x})}\) (x=1-10) clusters: computational approach. Polyhedron 193:114874

    Article  Google Scholar 

  5. Sgibnev Y, Cattaruzza E, Dubrovin V, Vasilyev V, Nikonorov N (2018) Photo-thermo-refractive glasses doped with silver molecular clusters as luminescence downshifting material for photovoltaic applications. Part Part Syst Charact 35(12):1800141

    Article  Google Scholar 

  6. Ranjan P, Chakraborty T (2019) Density functional approach: to study copper sulfide nanoalloy clusters. Acta Chim Slov 66(1):173

    Article  CAS  Google Scholar 

  7. Wang J, Zhao Y, Li J, Huang H-C, Chen J, Cheng S-B (2019) Unveiling the electronic structures and ligation effect of the superatom-polymeric zirconium oxide clusters: a computational study. Phys Chem Chem Phys 21:14865

    Article  CAS  Google Scholar 

  8. Ng WC, Lim TL, Yoon TL (2015) Ground-state structures of hafnium clusters. AIP Conf Proc 1657(1):070003

    Article  Google Scholar 

  9. Balesa BA, Lawal A, Dalhatu SA, Idris B, Bello M (2021) First principles calculations of structural, electronic and optical properties of nitrogen-doped titanium dioxide for solar cells application. Commun Phys Sci 7(4):278

    CAS  Google Scholar 

  10. Zhang T, Zhang X, Yang Y, Wu W (2021) High–K dielectric oxides for electronics. Oxide Electron 75

  11. Ullah M, Rana AM, Mehtab U, Farooq M (2021) Study of structural, electronic and optical properties of co-doped \(\text{ CeO}_2\) using the density functional theory (DFT) method. Mater Sci Semicond Process 130:105800

    Article  CAS  Google Scholar 

  12. RHA -del-Toro, FA Granja, MB Torres, Vega A (2021) Relation between structural patterns and magnetism in small iron oxide clusters: reentrance of the magnetic moment at high oxidation ratios. Phys Chem Chem Phys 23:246

  13. Zheng C, Bu H, Yang F, Xu Z, Zhao H (2021) Size effect of \((\text{ CuO})_\text{ n } (\text{ n }=1-6)\) clusters on the modification of rutile- \(\text{ TiO}_2\) photocatalysts. Energy Technol 10(1):2100161

    Article  Google Scholar 

  14. Shen Y, Du Q, Zhao Y, Zhou S, Zhao J (2021) Methane conversion by transition metal-doped vanadium oxide clusters. Chem Phys Lett 779:138829

    Article  CAS  Google Scholar 

  15. Belouf N, Cherchab Y, SL-Fasla, Daoud S, Rekab-Djabri H, Chahed A (2022) Theoretical investigation of structural, electronic and optical properties of Sc-doped \(\text{ SnO}_2\). Computational Condensed Matter 30:e00642

  16. Li S, Zhang Y, Yang D, Yang W, Chen X, Zhao H, Hou J, Yang P (2020) Structure and optical properties of \(\text{ HfO}_2\) films on Si (100) substrates prepared by ALD at different temperatures. Physica B: Physics of Condensed Matter 584:412065

    Article  CAS  Google Scholar 

  17. Scott EA, Gaskins JT, King SW, Hopkins PE (2018) Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon. APL Mater 6:058302

    Article  Google Scholar 

  18. Kumar HP, Vidya S, Kumar SS, Vijayakumar C, Solomon S, Thomas JK (2015) Optical properties of nanocrystalline \(\text{ HfO}_2\) synthesized by an auto-igniting combustion synthesis. J Asian Ceram Soc 3(1):64

    Article  Google Scholar 

  19. Venkataiah S, Chandra SVJ, Babu MV, Uthanna S (2021) Investigations on compositional, structural and optical properties of thermally oxidized \(\text{ HfO}_2\) films. Arab J Sci Eng 47:7541

    Article  Google Scholar 

  20. Kumar M, Singh RP, Kumar A (2021) Opto-electronic properties of \(\text{ HfO}_2\): a first principle-based spin-polarized calculations. Optik 226(1)

  21. Wiatrowski A, Obstarczyk A, Mazur M, Kaczmarek D, Wojcieszak D (2019) Characterization of \(\text{ HfO}_2\) optical coatings deposited by MF magnetron sputtering. Coatings 9:106

    Article  Google Scholar 

  22. Pokhriyal S, Biswas S (2016) Doping dependent high-frequency dielectric properties of \(\text{ Hf}_{1-\text{ x }}\text{ Ti}_\text{ x } \text{ O}_2\) nanoparticles. Mater Today-Proc 3(6):1311

    Article  Google Scholar 

  23. Obstarczyk A, Kaczmarek D, Wojcieszak D, Mazur M, Domaradzki J, Kotwica T, Pastuszek R, Schmeisser D, Mazur P, Kot M (2019) Tailoring optical and electrical properties of thin-film coatings based on mixed Hf and Ti oxides for optoelectronic application. Mater Des 175:107822

    Article  CAS  Google Scholar 

  24. Veved A, Ejuh GW, Djongyang N (2019) Effect of \(\text{ HfO}_2\) on the dielectric, optoelectronic and energy harvesting properties of PVDF. Opti Quant Electron 51:330

    Article  Google Scholar 

  25. Alnuaimi A, Almansouri I, Saadat I, Nayfeh A (2018) High performance graphene-silicon schottky junction solar cells with \(\text{ HfO}_2\) interfacial layer grown by atomic layer deposition. Solar Energy 164:174

    Article  CAS  Google Scholar 

  26. Como MR, Sacramento A, Sánchez JG, Marsal LF, Balderrama VS, Estrada M (2020) Impact of the hafnium oxide as hole blocking layer on the performance of organic solar cells. IEEE Latin America Electron Devices Conference (LAEDC) 1

  27. Kishimoto S, Toda A (2021) High-energy and high-rate X-ray measurements using \(\text{ HfO}_2\) nanoparticle-loaded plastic scintillator. IEEE Trans Nucl Sci 68(2):165

    Article  CAS  Google Scholar 

  28. Gier C, Yaala MB, Wiseman C, MacFoy S, Chicoine M, Schiettekatte F, Hough J, Rowan S, Martin I, MacKay P, Reid S (2023) Controlling the optical properties of hafnium dioxide thin films deposited with electron cyclotron resonance ion beam deposition. Thin Solid Films 771:139781

    Article  CAS  Google Scholar 

  29. Kanmaz I, Mandong Al M, Uzum A (2020) Solution-based hafnium oxide thin films as potential antireflection coating for silicon solar cells. J Mater Sci: Mater Electron 31:21279

    CAS  Google Scholar 

  30. Abromavičius G, Kičas S, Buzelis R (2019) High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered \(\text{ HfO}_2\) and \(\text{ HfO}_2\)-\(\text{ SiO}_2\) mixture-based UV mirrors. Opt Mater 95:109245

    Article  Google Scholar 

  31. Ramzan M, Rana AM, Ahmed E, Wasiq MF, Bhatti AS, Hafeez M, Ali A, Nadeem MY (2015) Optical characterization of hafnium oxide thin films for heat mirrors. Mater Sci Semicond Process 32:22

    Article  CAS  Google Scholar 

  32. Mikolajick T, Schroeder U, Lomenzo PD, Breyer ET, Mulaosmanovic H, Hoffmann M, Mittmann T, Mehmood F, Max B, Slesazeck S (2019) Next generation ferroelectric memories enabled by hafnium oxide. 2019 IEEE International Electron Devices Meeting (IEDM), 15.5.1

  33. Gong Y, Zhang QQ, Zhou M (2007) Matrix isolation infrared spectroscopic and theoretical study of group IV metal oxide clusters: \(\text{ M}_2\text{ O}_2\) and \(\text{ M}_2\text{ O}_4\). J Phys Chem A 111:3534

    Article  CAS  Google Scholar 

  34. Li S, Dixon DA (2010) Molecular structures and energetics of the \((\text{ ZrO}_2)_\text{ n }\) and \((\text{ HfO}_2)_\text{ n } (n=1-4)\) clusters and their anions. J Phys Chem A 114(7):2665

    Article  CAS  Google Scholar 

  35. Gong Y, Zhou M (2009) Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem Rev 109:6765

    Article  CAS  Google Scholar 

  36. Enghag P (2004) Encyclopedia of the elements: technical data- history- processing-applications, 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim

    Book  Google Scholar 

  37. Kuo Y, Lin C-C (2013) A light emitting device made from thin zirconium-doped hafnium oxide high-k dielectric film with or without an embedded nanocrystal layer. Appl Phys Lett 102(3):031117

    Article  Google Scholar 

  38. Ihlefeld JF, Luk TS, Smith SW, Fields SS, Jaszewski ST, Hirt DM, Riffle WT, Bender S, Constantin C, Ayyasamy MV, Balachandran PV, Lu P, Henry MD, Davids PS (2020) Compositional dependence of linear and nonlinear optical response in crystalline hafnium zirconium oxide thin films. J Appl Phys 128(3):034101

    Article  CAS  Google Scholar 

  39. Jenkins MA, Holden KEK, Smith SW, Brumbach MT, Henry MD, Weiland C, Woicik JC, Jaszewski ST, Ihlefeld JF, Conley JF (2021) Determination of hafnium zirconium oxide interfacial band alignments using internal photoemission spectroscopy and X-ray photoelectron spectroscopy. ACS Appl. Mater. Interfaces. 13(12):14634

    Article  CAS  Google Scholar 

  40. Hsu H-H, Liu H-M, Lee S (2020) Experimental investigation of thermal annealing and ferroelectric capacitor area effects for hafnium-zirconium oxide devices. Coatings 10(8):733

    Article  CAS  Google Scholar 

  41. Lederer M, Kämpfe T, Vogel N, Utess D, Volkmann B, Ali T, Olivo R, Muller J, Beyer S, Trentzsch M, Seidel K, Eng LM (2020) Structural and electrical comparison of Si and Zr doped hafnium oxide thin films and integrated FeFETs utilizing transmission Kikuchi diffraction. Nanomaterials 10(2):384

    Article  CAS  Google Scholar 

  42. Jena P, Sun Q (2018) Super atomic clusters: design rules and potential for building blocks of materials. Chem Rev 118:5755

    Article  CAS  Google Scholar 

  43. Kashyap S, Batra K (2022) Structural, electronic, thermodynamic and optical properties of \(\text{ Sn}_\text{ l }\text{ Se}_\text{ m }\text{ S}_\text{ n }\) clusters: A DFT study. Chem Phys 558:111501

    Article  CAS  Google Scholar 

  44. Makkar P, Ghosh NN (2021) A review on the use of DFT for the prediction of the properties of nanomaterials. RSC Adv 11:27897

    Article  CAS  Google Scholar 

  45. Sumer A, Jellinek J (2022) Computational studies of structural, energetic, and electronic properties of pure Pt and Mo and mixed Pt/Mo clusters: Comparative analysis of characteristics and trends. J Chem Phys 157:034301

    Article  CAS  Google Scholar 

  46. Abdulsattar MA, Abed HH, Jabbar RH, Almaroof NM (2021) Effect of formaldehyde properties on \(\text{ SnO}_2\) clusters gas sensitivity: a DFT study. J Mol Graph Model 102

  47. Xi S-G, Li Q-Y, Hu Y-F, Yuan Y-Q, Zhao Y-R, Yuan J-J, Li M-C, Yang Y-J (2022) Probing structural and electronic properties of divalent metal \(\text{ Mg}_{\text{ n }+1}\) and \(\text{ SrMg}_{\text{ n }}\) (n=2-12) clusters and their anions. Chinese Phys B 31:016106

    Article  Google Scholar 

  48. Baek J-H, Bae G-T (2020) ReaxFF and density functional theory studies of structural and electronic properties of copper oxide clusters. J Kor Chem Soc 64(2):61

    CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox (2016) Gaussian 16, Revision B. 01, Gaussian. Inc., Wallingford CT

  50. Zhu B-C, Bao L, Deng P-J et al (2022) Systematic research on gallium atom doped neutral small- and medium-sized gas-phase magnesium clusters: a DFT study of \(\text{ GaMg}_\text{ n } (\text{ n }=2-12)\) clusters. J Chem Phys 157

  51. Tahaoglu D, Alkan F, Durandurdu M (2021) Theoretical investigation of substituent effects on the relative stabilities and electronic structure of \([\text{ B}_\text{ n }\text{ X}_\text{ n}]^{2-}\) clusters. J Mol Model 27:365

    Article  CAS  Google Scholar 

  52. Wu X, Wang G-Y, Du R-B, Tang S (2020) Structures, stabilities and electronic properties of Pt-Rh clusters based on DFT and Sutton-Chen potential. Chem Phys 534:110751

    Article  CAS  Google Scholar 

  53. Atkins P, de Paula J. Physical chemistry, eighth edition, Oxford University press

  54. McQuarrie DA (1965) Statist Mech

  55. Banwell CN, McCash EM (2016) Fundamentals of molecular spectroscopy, fourthe edition, Mc Graw Hill education

  56. Ranjan P, Surolia PK, Chakraborty T (2021) Structure, electronic and optical properties of chalcopyrite-type nano-clusters \(\text{ XFeY}_2\) (X=Cu, Ag, Au; Y=S, Se, Te): a density functional theory study. Pure Appl Chem 93(5):591

    Article  CAS  Google Scholar 

  57. Ranjan P, Chakraborty T (2020) Structure and optical properties of \((\text{ CuAg})_\text{ n }\) (n = 1–6) nanoalloy clusters within density functional theory framework. J Nanopart Res 22:280

    Article  CAS  Google Scholar 

  58. Technical note of Gaussian Software entitled “Creating UV/visible plots from the results of excited states calculations”. Available at https://gaussian.com/uvvisplot/

Download references

Acknowledgements

Shilpa Kashyap is thankful to Guru Gobind Singh Indraprastha University for providing financial support under the Indraprastha Research Fellowship (IPRF) scheme (L. No. GGSIPU/DRC/ 2019/90/1797). Dr. Kriti Batra is grateful to Guru Gobind Singh Indraprastha University for the research grant under the Faculty Research Grant Scheme (FRGS) for the year 2018-19 (F. No. GGSIPU/DRC/FRGS/2018/8(1115)L) and 2019-20 (F. No. GGSIPU/DRC/FRGS/2019/1553/12).

Author information

Authors and Affiliations

Authors

Contributions

Shilpa Kashyap: investigation and validation of results after performing calculations, software handling, maintaining the research data, and writing the original draft. Dr. Kriti Batra: conceptualization, supervision, project administration, provision of resources and software, reviewing and editing of the draft, and funding.

Corresponding author

Correspondence to Kriti Batra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 2247 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, S., Batra, K. Effect of Zr substitution on structural, electronic, thermodynamic and optical properties of \((\textrm{HfO}_2)_{\text{p}}\) clusters: a DFT study of \((\textrm{HfO}_2)_{\textrm{p}}\) and \(\textrm{Hf}_{\textrm{q}} \textrm{Zr}_{\text {r}} \textrm{O}_{2(\textrm{q}+\textrm{r})}\) clusters. J Nanopart Res 26, 13 (2024). https://doi.org/10.1007/s11051-023-05876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05876-2

Keywords

Navigation