Skip to main content
Log in

Efficient antibacterial study based on near-infrared excited metal–organic framework nanocomposite

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Near-infrared light-triggered UCNR@ZIF-67 antibacterial nanomaterials were constructed by combining β-NaYF4:Yb,Tm,Gd up-conversion nanorods (UCNRs) with near-infrared light response and Zeolitic Imidazolate Frameworks (ZIF-67) through the layer-by-layer self-assembly method. The optical properties, structure, composition, and morphology of UCNR@ZIF-67 were investigated by using UV–vis diffuse reflectance spectroscopy, X-ray diffraction and transmission electron microscopy. Reactive oxidizing species (ROS) detection indicated that the UCNR@ZIF-67 owned a good photodynamic efficacy. UCNR@ZIF-67 exhibited low toxicity and good biocompatibility by CCK-8 method. About 99.3% of E. coli and 99.1% of S. aureus were killed by UCNR@ZIF-67 under 980-nm laser irradiation for 25 min (1.0 W/cm2). Under 980-nm laser excitation, UCNRs generated ultraviolet and visible light to activate ZIF-67 and produced a large number of electron/hole pairs (e/h+), which can react with O2 and H2O to produced ROS for antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wei Y, Wang J, Wu S, Zhou R, Zhang K, Zhang Z, Liu J, Qin S, Shi J (2022) Nanomaterial-based zinc ion interference therapy to combat bacterial infections. Front Immunol 13:899992. https://doi.org/10.3389/fimmu.2022.899992

    Article  CAS  Google Scholar 

  2. Zhao X, Tang H, Jiang X (2022) Deploying gold nanomaterials in combating multi-drug-resistant bacteria. ACS Nano 16(7):10066–10087. https://doi.org/10.1021/acsnano.2c02269

    Article  CAS  Google Scholar 

  3. Wang YF, Cai TG, Liu ZL, Cui HL, Zhu D, Qiao M (2023) A new insight into the potential drivers of antibiotic resistance gene enrichment in the collembolan gut association with antibiotic and non-antibiotic agents. J Hazard Mater 451:131133. https://doi.org/10.1016/j.jhazmat.2023.131133

    Article  CAS  Google Scholar 

  4. Sun B, Teo JY, Wu J, Zhang Y (2023) Light conversion nanomaterials for wireless phototherapy. Acc Chem Res. https://doi.org/10.1021/acs.accounts.2c00699

    Article  Google Scholar 

  5. Zhong YT, Cen Y, Xu L, Li SY, Cheng H (2023) Recent progress in carrier-free nanomedicine for tumor phototherapy. Adv Healthc Mater 12(4):e2202307. https://doi.org/10.1002/adhm.202202307

    Article  CAS  Google Scholar 

  6. Garapati C, Boddu SHS, Jacob S, Ranch KM, Patel C, Babu RJ, Tiwari AK, Yasin H (2023) Photodynamic therapy: a special emphasis on nanocarrier-mediated delivery of photosensitizers in antimicrobial therapy. Arab J Chem 16(4):104583. https://doi.org/10.1016/j.arabjc.2023.104583

    Article  CAS  Google Scholar 

  7. Moghassemi S, Dadashzadeh A, Azevedo RB, Amorim CA (2022) Nanoemulsion applications in photodynamic therapy. J Control Release 351:164–173. https://doi.org/10.1016/j.jconrel.2022.09.035

    Article  CAS  Google Scholar 

  8. Liu J, Huang M, Zhang X, Hua Z, Feng Z, Dong Y, Sun T, Sun X, Chen C (2022) Polyoxometalate nanomaterials for enhanced reactive oxygen species theranostics. Coord Chem Rev 472:214785. https://doi.org/10.1016/j.ccr.2022.214785

  9. Warrier A, Mazumder N, Prabhu S, Satyamoorthy K, Murali TS (2021) Photodynamic therapy to control microbial biofilms. Photodiagnosis Photodyn Ther 33:102090. https://doi.org/10.1016/j.pdpdt.2020.102090

    Article  CAS  Google Scholar 

  10. Ge M, Guo H, Zong M, Chen Z, Liu Z, Lin H, Shi J (2023) Bandgap-engineered germanene nanosheets as an efficient photodynamic agent for cancer therapy. Angew Chem Int Ed Engl 62(12):e202215795. https://doi.org/10.1002/anie.202215795

    Article  CAS  Google Scholar 

  11. Wu Y, Zang Y, Xu L, Wang J, Jia H, Miao F (2021) Synthesis of high-performance conjugated microporous polymer/TiO2 photocatalytic antibacterial nanocomposites. Mater Sci Eng C Mater Biol Appl 126:112121. https://doi.org/10.1016/j.msec.2021.112121

    Article  CAS  Google Scholar 

  12. Lin G, Zeng B, Li J, Wang Z, Wang S, Hu T, Zhang L (2023) A systematic review of metal organic frameworks materials for heavy metal removal: synthesis, applications and mechanism. Chem Eng J 460:141710. https://doi.org/10.1016/j.cej.2023.141710

  13. Chen J, Yang Y, Zhao S, Bi F, Song L, Liu N, Xu J, Wang Y, Zhang X (2022) Stable black phosphorus encapsulation in porous mesh-like UiO-66 promoted charge transfer for photocatalytic oxidation of toluene and o-dichlorobenzene: performance, degradation pathway, and mechanism. ACS Catal 12(13):8069–8081. https://doi.org/10.1021/acscatal.2c01375

    Article  CAS  Google Scholar 

  14. Zhao Q, Zhao Z, Rao R, Yang Y, Ling S, Bi F, Shi X, Xu J, Lu G, Zhang X (2022) Universitetet i Oslo-67 (UiO-67)/graphite oxide composites with high capacities of toluene: synthesis strategy and adsorption mechanism insight. J Colloid Interface Sci 627:385–397. https://doi.org/10.1016/j.jcis.2022.07.059

    Article  CAS  Google Scholar 

  15. Bi F, Zhao Z, Yang Y, Gao W, Liu N, Huang Y, Zhang X (2022) Chlorine-coordinated Pd single atom enhanced the chlorine resistance for volatile organic compound degradation: mechanism study. Environ Sci Technol 56(23):17321–17330. https://doi.org/10.1021/acs.est.2c06886

    Article  CAS  Google Scholar 

  16. Dymerska AG, Środa B, Zielińska B, Mijowska E (2023) In situ insight into the low-temperature promotion of ZIF-67 in electrocatalytic oxygen evolution reaction. Mater Des 226:111637. https://doi.org/10.1016/j.matdes.2023.111637

  17. Geng T, Zhang J, Wang Z, Shi Y, Shi Y, Zeng L (2023) Ultrasmall gold decorated bimetallic metal-organic framework based nanoprobes for enhanced chemodynamic therapy with triple amplification. J Mater Chem B 11(10):2249–2257. https://doi.org/10.1039/d2tb02548e

    Article  CAS  Google Scholar 

  18. Wang K, Liu S, Li Y, Wang G, Yang M, Jin Z (2022) Phosphorus ZIF-67@NiAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production. Appl Surf Sci 601:154174. https://doi.org/10.1016/j.apsusc.2022.154174

  19. Tran NT, Trung LG, Nguyen MK (2021) The degradation of organic dye contaminants in wastewater and solution from highly visible light responsive ZIF-67 monodisperse photocatalyst. J Solid State Chem 300:122287. https://doi.org/10.1016/j.jssc.2021.122287

  20. Kundu BK, Han G, Sun Y (2023) Derivatized benzothiazoles as two-photon-absorbing organic photosensitizers active under near infrared light irradiation. J Am Chem Soc 145(6):3535–3542. https://doi.org/10.1021/jacs.2c12244

    Article  CAS  Google Scholar 

  21. Zhao C, Sun W, Tan B, Su D, Liu Y (2023) Penicillin G amidase-activatable near-infrared imaging guiding PDT of bacterial infections. Sensors Actuators B Chem 382:133502. https://doi.org/10.1016/j.snb.2023.133502

  22. Ozaki Y (2021) Infrared spectroscopy-mid-infrared, near-infrared, and far-infrared/terahertz spectroscopy. Anal Sci 37(9):1193–1212. https://doi.org/10.2116/analsci.20R008

    Article  CAS  Google Scholar 

  23. Yuan Z, Lin C, He Y, Tao B, Chen M, Zhang J, Liu P, Cai K (2020) Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano 14(3):3546–3562. https://doi.org/10.1021/acsnano.9b09871

    Article  CAS  Google Scholar 

  24. Sun C, Gradzielski M (2022) Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 300:102579. https://doi.org/10.1016/j.cis.2021.102579

    Article  CAS  Google Scholar 

  25. Zhang W, Zang Y, Lu Y, Han J, Xiong Q, Xiong J (2022) Photodynamic therapy of up-conversion nanomaterial doped with gold nanoparticles. Int J Mol Sci 23(8):4279. https://doi.org/10.3390/ijms23084279

    Article  CAS  Google Scholar 

  26. Moyano Rodriguez E, Gomez-Mendoza M, Perez-Ruiz R, Penin B, Sampedro D, Caamano A, de la Pena O’Shea VA (2021) Controlled synthesis of up-conversion NaYF4:Yb,Tm nanoparticles for drug release under near IR-light therapy. Biomedicines 9(12):1953. https://doi.org/10.3390/biomedicines9121953

  27. Miletto I, Gionco C, Paganini MC, Cerrato E, Marchese L, Gianotti E (2022) Red upconverter nanocrystals functionalized with verteporfin for photodynamic therapy triggered by upconversion. Int J Mol Sci 23(13):6951. https://doi.org/10.3390/ijms23136951

  28. Tou M, Luo Z, Bai S, Liu F, Chai Q, Li S, Li Z (2017) Sequential coating upconversion NaYF4:Yb, Tm nanocrystals with SiO2 and ZnO layers for NIR-driven photocatalytic and antibacterial applications. Mater Sci Eng C Mater Biol Appl 70(Pt 2):1141–1148. https://doi.org/10.1016/j.msec.2016.03.038

    Article  CAS  Google Scholar 

  29. Song J, Sun L, Geng H, Tan W, Zhen D, Cai Q (2022) Near-infrared light-triggered β-NaYF4:Yb, Tm, Gd@MIL-100(Fe) nanomaterials for antibacterial applications. New J Chem 46(10):4806–4813. https://doi.org/10.1039/d1nj06014g

    Article  CAS  Google Scholar 

  30. Li H, Yang W, Wu N, Sun L, Shen P, Wang X, Li Y (2023) Highly-dispersed carboxymethyl cellulose and polyvinylpyrrolidone functionalized boron nitride for enhanced thermal conductivity and hydrophilicity. Appl Surf Sci 617:156485. https://doi.org/10.1016/j.apsusc.2023.156485

  31. Ling D, Li H, Xi W, Wang Z, Bednarkiewicz A, Dibaba ST, Shi L, Sun L (2020) Heterodimers made of metal-organic frameworks and upconversion nanoparticles for bioimaging and pH-responsive dual-drug delivery. J Mater Chem B 8(6):1316–1325. https://doi.org/10.1039/c9tb02753j

    Article  CAS  Google Scholar 

  32. Pennisi FM, Pellegrino AL, Licciardello N, Mezzalira C, Sgarzi M, Speghini A, Malandrino G, Cuniberti G (2022) Synthesis, characterization and photocatalytic properties of nanostructured lanthanide doped beta-NaYF4/TiO2 composite films. Sci Rep 12(1):13748. https://doi.org/10.1038/s41598-022-17256-2

    Article  CAS  Google Scholar 

  33. Zhang X, Hu X, Wu H, Mu L (2021) Persistence and recovery of ZIF-8 and ZIF-67 phytotoxicity. Environ Sci Technol 55(22):15301–15312. https://doi.org/10.1021/acs.est.1c05838

    Article  CAS  Google Scholar 

  34. Fu X, Li J, Li D, Zhao L, Yuan Z, Shulga V, Han W, Wang L (2022) MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS Appl Mater Interfaces 14(10):12367–12374. https://doi.org/10.1021/acsami.1c24655

    Article  CAS  Google Scholar 

  35. Zhu P, Lin J, Xie L, Duan M, Chen D, Luo D, Wu Y (2021) Visible light response photocatalytic performance of Z-scheme Ag3PO4/GO/UiO-66-NH2 photocatalysts for the levofloxacin hydrochloride. Langmuir 37(45):13309–13321. https://doi.org/10.1021/acs.langmuir.1c01901

    Article  CAS  Google Scholar 

  36. Raha S, Ahmaruzzaman M (2021) Novel magnetically retrievable In2O3/MoS2/Fe3O4 nanocomposite materials for enhanced photocatalytic performance. Sci Rep 11(1):6379. https://doi.org/10.1038/s41598-021-85532-8

    Article  CAS  Google Scholar 

  37. Doustdar F, Ghorbani M (2022) ZIF-8 enriched electrospun ethyl cellulose/polyvinylpyrrolidone scaffolds: The key role of polyvinylpyrrolidone molecular weight. Carbohydr Polym 291:119620. https://doi.org/10.1016/j.carbpol.2022.119620

    Article  CAS  Google Scholar 

  38. Ma DX, Yang Y, Yin GZ, Vazquez-Lopez A, Jiang Y, Wang N, Wang DY (2022) ZIF-67 In situ grown on attapulgite: a flame retardant synergist for ethylene vinyl acetate/magnesium hydroxide composites. Polymers (Basel) 14(20):4408. https://doi.org/10.3390/polym14204408

    Article  CAS  Google Scholar 

  39. Sun YL, Zhang XP, Zhao CX, Liu X, Shu Y, Wang JH, Liu N (2021) Upconversion nanoparticles/carbon dots (UCNPs@CDs) composite for simultaneous detection and speciation of divalent and trivalent iron ions. Anal Chim Acta 1183:338973. https://doi.org/10.1016/j.aca.2021.338973

    Article  CAS  Google Scholar 

  40. Yu Q, He C, Li Q, Zhou Y, Duan N, Wu S (2020) Fluorometric determination of acetamiprid using molecularly imprinted upconversion nanoparticles. Mikrochim Acta 187(4):222. https://doi.org/10.1007/s00604-020-4204-0

    Article  CAS  Google Scholar 

  41. Costa BA, Abucafy MP, Barbosa TWL, da Silva BL, Fulindi RB, Isquibola G, da Costa PI, Chiavacci LA (2023) ZnO@ZIF-8 nanoparticles as nanocarrier of ciprofloxacin for antimicrobial activity. Pharmaceutics 15(1):259. https://doi.org/10.3390/pharmaceutics15010259

    Article  CAS  Google Scholar 

  42. Jenkins J, Mantell J, Neal C, Gholinia A, Verkade P, Nobbs AH, Su B (2020) Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat Commun 11(1):1626. https://doi.org/10.1038/s41467-020-15471-x

    Article  CAS  Google Scholar 

  43. Wang X, Wei X, Liu J, He D, Sun D, Yang W, Jiao Y, Cui Q (2022) Oxygen self-supplying enzymatic nanoplatform for precise and enhanced photodynamic therapy. Adv Ther 5(9):2200049. https://doi.org/10.1002/adtp.202200049

    Article  CAS  Google Scholar 

  44. Liu Y, Cheng S, Zhan S, Wu X (2021) Manipulating energy transfer in UCNPs@SiO2@Ag nanoparticles for efficient infrared photocatalysis. Inorg Chem 60(8):5704–5710. https://doi.org/10.1021/acs.inorgchem.0c03759

    Article  CAS  Google Scholar 

  45. Ju D, Gao X, Zhang S, Li Y, Cui W, Yang Y, Luo M, Liu S (2021) Temperature-dependent upconversion luminescence multicolor tuning and temperature sensing of multifunctional β-NaYF4:Yb/Er@β-NaYF4:Yb/Tm microcrystals. CrystEngComm 23(21):3892–3900. https://doi.org/10.1039/d1ce00123j

    Article  CAS  Google Scholar 

  46. Shrivastava N, Ospina C, Jacinto C, de Menezes AS, Muraca D, Javed Y, Knobel M, Luo Z, Sharma SK (2023) Probing the optical and magnetic modality of multi core-shell Fe3O4@SiO2@β-NaGdF4:RE3+ (RE = Ce, Tb, Dy) nanoparticles. Opt Mater 137:113585. https://doi.org/10.1016/j.optmat.2023.113585

  47. Cheng H, Wang J, Yang Y, Shi H, Shi J, Jiao X, Han P, Yao X, Chen W, Wei X, Chu PK, Zhang X (2022) Ti3C2TX MXene modified with ZnTCPP with bacteria capturing capability and enhanced visible light photocatalytic antibacterial activity. Small 18(26):e2200857. https://doi.org/10.1002/smll.202200857

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Natural Science Foundation of China (82204176, 12175103), the Natural Science Foundation of Hunan Province (2021JJ40454, 2023JJ50127), the research fund of Nuclear Materials of China Atomic Energy Authority (ICNM-2023-ZH-22), and the Research Foundation of Education Bureau of Hunan Province (22B0432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deshuai Zhen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Liu, Y., Zhang, S. et al. Efficient antibacterial study based on near-infrared excited metal–organic framework nanocomposite. J Nanopart Res 25, 160 (2023). https://doi.org/10.1007/s11051-023-05810-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05810-6

Keywords

Navigation