Skip to main content
Log in

Magneto caloric effects in the graphdiyne structure: monte carlo study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we report the magneto-caloric properties of the Graphdiyne structure with mixed 3/2 and 1 spins investigated by Monte Carlo simulations. Such calculations were performed under the Metropolis algorithm. We illustrate the magnetizations and dM/dT of the Graphdiyne system with these mixed spins. It is found that the magnetic entropy of the Graphdiyne changes when varying the temperature values for several values of the external magnetic field. The maximum magnetic entropy variations of the system are deduced. The relative cooling power (RCP) coefficient of the Graphdiyne system has been estimated for several values of the external magnetic field. To complete this work, we have illustrated the magnetic hysteresis cycles of the Graphdiyne for fixed values of the other physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zhou J, Gao X, Liu R, Xie Z, Yang J, Zhang S, Zhang G, Liu H, Li Y, Zhang J, Liu Z (2015) Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J Am Chem Soc 137(24):7596

    Article  CAS  Google Scholar 

  2. Li GX, Li YL, Liu HB, Guo YB, Li YJ, Zhu DB (2010) Architecture of Graphdiyne nanoscale films. Chem Commun 46:3256

    Article  CAS  Google Scholar 

  3. Li YJ, Xu L, Liu HB, Li YL (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43:2572

    Article  CAS  Google Scholar 

  4. Coluci VR, Galvao DS, Baughman RHJ (2004) Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. Chem Phys 121:3228

    CAS  Google Scholar 

  5. Iskender G, Fahrettin K (2020) Mustafa, Size dependence in the electronic and optical properties of a BN analogue of two-dimensional Graphdiyne: a theoretical study. Chem Phys 539:110929

    Article  Google Scholar 

  6. Zhang MJ, Wang XX, Sun HJ, Wang N, Lv Q, Cui WW, Long YZ, Huang CS (2017) Enhanced paramagnetism of mesoscopic Graphdiyne by doping with nitrogen. Sci Rep 7:11535

    Article  Google Scholar 

  7. Kaneyoshi T (2017) Effects of a transverse field in two mixed-spin Ising bilayer films. Nanomaterials 7(9):256

    Article  Google Scholar 

  8. Kaneyoshi T (2020) Decorated Ising nanoparticles with high critical temperature. Phase Transitions 93(2):263

    Article  CAS  Google Scholar 

  9. Kaneyoshi T (2019) Magnetism in an antiferromagnetic Ising nanoparticle under an applied transverse field. Chem Phys Lett 736:136755. https://doi.org/10.1016/j.cplett.2019.136755

    Article  CAS  Google Scholar 

  10. Masrour R, Jabar A (2017) Magnetic properties of bilayer graphene armchair nanoribbons: a Monte Carlo study. J Magn Magn Mater 426:225

    Article  CAS  Google Scholar 

  11. Masrour R, Jabar A, Bahmad L, Hamedoun M, Benyoussef A (2017) Magnetic properties of mixed integer and half-integer spins in a Blume-Capel model: a Monte Carlo study. J Magn Magn Mater 421:76

    Article  CAS  Google Scholar 

  12. Li X, Jiang H, Ning H et al (2022) Graphdiyne-related materials in biomedical applications and their potential in peripheral nerve tissue engineering. Cyborg Bionic Syst 2022. https://doi.org/10.34133/2022/9892526

  13. Zhang K et al (2021) Graphdiyne-deposited microfiber structure all-optical modulator at the telecommunication band. Opt Express 29(23):38915–38923

    Article  CAS  Google Scholar 

  14. Popov VN, Lambin P (2013) Theoretical Raman fingerprints of alpha-, beta-, and gamma-graphyne. Phys Rev B 88:075427

    Article  Google Scholar 

  15. Zhang S, Wang J, Li Z, Zhao R, Tong L, Liu Z, Zhang J, Liu Z (2016) Raman spectra and corresponding strain effects in graphyne and Graphdiyne. J Phys Chem C 120:10605

    Article  CAS  Google Scholar 

  16. Zhao J, Wang J (2017) Vibrational characterization of two-dimensional Graphdiyne sheets. J Phys Chem C 121:21430

    Article  CAS  Google Scholar 

  17. Wang J, Zhang S, Zhou J, Liu R, Du R, Xu H, Liu Z, Zhang L, Liu Z (2014) Identifying sp-sp2 carbon materials by Raman and infrared spectroscopies. Phys Chem Chem Phys 16:11303

    Article  CAS  Google Scholar 

  18. Masrour R, Bahmad L, Hamedoun M, Benyoussef A, Hlil EK (2014) Dilution effect on nanographene magnetic properties. J Supercond Novel Magn 27(2):535–541

    Article  CAS  Google Scholar 

  19. Bahlagui T, Bouda H, El Kenz A, Bahmad L, Benyoussef A (2017) Monte Carlo simulation of compensation behavior for a mixed spin-5/2 and spin-7/2, Ising system with crystal field interaction. Superlattice Microst 110:90–97

    Article  CAS  Google Scholar 

  20. Maaouni N, Qajjour M, Fadil Z, Mhirech A, Kabouchi B, Bahmad L, Benomar WO (2019) Magnetic and thermal properties of a core-shell borophene structure: Monte Carlo study. Physica B 566:63–70

    Article  CAS  Google Scholar 

  21. Mhirech A, Aouini S, Alaoui-Ismaili A, Bahmad L (2018) Bi-layer graphene structure with non-equivalent planes: Magnetic properties study. Superlattice Microst 117:382–391

    Article  CAS  Google Scholar 

  22. Fadil Z, Mhirech A, Kabouchi B, Bahmad L, Ousi Benomar W (2019) Dielectric properties of a monolayer nano-graphyne structure: Monte Carlo simulations. Superlattice Microst 135:106285

    Article  CAS  Google Scholar 

  23. Zhao Y, Yang N, Yu R, Zhang Y, Zhang J, Li Y, Wang D (2020) EnergyChem 2:2589

    Article  Google Scholar 

  24. Si N, Zhang F, Jiang W, Zhang YL (2018) Physica A 510:641

    Article  CAS  Google Scholar 

  25. Yang Y, Cao J, Wei N, Meng D, Wang L, Ren G, Yan R, Zhang N (2019) Molecules 24:1103

    Article  CAS  Google Scholar 

  26. Sun L, Wang W, Liu C, Xu B-h, Lv D, Gao Z-y (2021) Superlattice Microst 149:106775

    Article  CAS  Google Scholar 

  27. Masrour R, Bahmad L, Benyoussef A et al (2013) J Supercond Nov Magn 26:679

    Article  CAS  Google Scholar 

  28. Mortazavi B, Silani M, Podryabinkin EV, Rabczuk T, Zhuang X, Shapeev AV (2021) Adv Mater 33:2102807

    Article  CAS  Google Scholar 

  29. França CA, Guerra Y, Valadão DRB, Holanda J, Padrón-Hernández E (2017) Comput Mater Sci 128:0927

    Article  Google Scholar 

  30. Holanda J, Silva DBO, Padrón-Hernández E (2015) J Magn Magn Mater 378:228

    Article  CAS  Google Scholar 

  31. Sabzevar M, Solaimani M, Ehsani MH, Tehrani DHT (2020) J Magn Magn Mater 502:0304

    Article  Google Scholar 

  32. ErchidiElyacoubi AS, Masrour R, Jabar A (2018) Solid State Commun 271:39

    Article  CAS  Google Scholar 

  33. Sharma P, Masrour R, Jabar A, Fan J, Kumar A, Ling L, Ma C, Wang C, Yang H (2020) Chem Phys Lett 740:0009

    Article  Google Scholar 

  34. Belhamra S, Masrour R, Jabar A, Hlil EK (2021) Polyhedron 193:0277

    Article  Google Scholar 

  35. Kadim G, Masrour R, Jabar A (2022) J Cryst Growth 581:0024

    Article  Google Scholar 

  36. Kadim G, Masrour R, Jabar A (2020) J Magn Magn Mater 499:0304

    Article  Google Scholar 

  37. Bessimou M, Masrour R, Jabar A, Kadim G, Hlil EK (2022) J Cryst Growth 581:0022

    Article  Google Scholar 

  38. Semenova O (2010) Mater Lett 64:1641

    Article  CAS  Google Scholar 

  39. Masrour R, Jabar A (2022) J Cryst Growth 597:0022

    Google Scholar 

  40. Baaalla N, Ammari Y, Hlil EK, Abid S, Masrour R, Benyoussef A, El Kenz A (2021) Ceram Int 47:2338

    Article  CAS  Google Scholar 

  41. El Maazouzi A, Masrour R, Jabar A (2022) Physica B 631:0921

    Article  Google Scholar 

  42. Kadim G, Masrour R, Jabar A (2021) Mater Today Commun 26:2352

    Google Scholar 

  43. Maaz K, Duan JL, Karim S, Chen YH, Yao HJ, Mo D, Sun YM, Liu J (2016) J Alloys Compd 662:296

    Article  CAS  Google Scholar 

Download references

Funding

This work was not supported by any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabar, A., Bahmad, L. & Benyoussef, A. Magneto caloric effects in the graphdiyne structure: monte carlo study. J Nanopart Res 25, 136 (2023). https://doi.org/10.1007/s11051-023-05788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05788-1

Keywords

Navigation