Skip to main content
Log in

Enhanced photovoltaic performance of PM6/Y6-based organic solar cells by a wide-bandgap small molecule acceptor

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Considering rare researches on wide-bandgap nonfullerene acceptors for ternary organic solar cells (OSCs), we reported a small molecule acceptor ITCN as the second acceptor for constructing PM6/Y6/ITCN ternary devices with better photovoltaic performance in this work. ITCN exhibits a large bandgap of 2.19 eV and a higher LUMO (the lowest unoccupied molecular orbital) than Y6, resulting in complementary optical absorption in the short-wavelength region and increased open-circuit voltage (VOC). As the content of ITCN increases, the hole mobilities increase continuously and the electron mobilities increase to a maximum value. Moreover, the incorporation of ITCN improves the nanoscale morphology and charge transport property to some extent. From PM6/Y6-based binary device to PM6/Y6/ITCN-based ternary device, the power conversion efficiency is increased from 15.01 to 16.04% with simultaneously enhanced VOC, short-circuit current, and fill factor. These results indicate that the design of wide-bandgap acceptors for high-performance ternary OSCs is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Wang J, Zhan X (2022) From perylene diimide polymers to fused-ring electron acceptors: a 15-year exploration journey of nonfullerene acceptors. Chin J Chem 40:1592–1607

    Article  Google Scholar 

  2. Liu W, Xu X, Yuan J, Leclerc M, Zou Y, Li Y (2021) Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett 6:598–608

    Article  CAS  Google Scholar 

  3. Iqbal M, Zhang J, Wei Z (2022) Hierarchical phase separation in all small-molecule organic solar cells. J Nanopart Res 24:225

    Article  CAS  Google Scholar 

  4. Kim M, Ryu S, Park S, Pu Y, Park T (2021) Designs and understanding of small- molecule based non-fullerene acceptors for realizing commercially viable organic photovoltaics. Chem Sci 12:14004–14023

    Article  CAS  Google Scholar 

  5. Armin A, Li W, Sandberg O et al (2021) A history and perspective of non-fullerene electron acceptors for organic solar cells. Adv Energy Mater 11:20003570

    Article  Google Scholar 

  6. Nie Q, Tang A, Guo Q, Zhou E (2021) Benzothiadiazole-based non-fullerene acceptors. Nano Energy 87:106174

    Article  CAS  Google Scholar 

  7. Yuan J, Zhang Y, Zhou L et al (2019) Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3:1140–1151

    Article  CAS  Google Scholar 

  8. Lin Y, Wang J, Zhang Z, Bai H, Li Y, Zhu D, Zhan X (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170–1174

    Article  CAS  Google Scholar 

  9. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139:7148–7151

    Article  CAS  Google Scholar 

  10. Lin Y, Zhao F, He Q et al (2016) High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc 138:4955–4961

    Article  CAS  Google Scholar 

  11. Fan B, Du X, Liu F et al (2018) Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat Energy 3:1051–1058

    Article  CAS  Google Scholar 

  12. Zhao H, Yao H, Hou J et al (2018) Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv Mater 30:1800613

    Article  Google Scholar 

  13. Zhu W, Spencer A, Mukherjee S et al (2020) Crystallography, morphology, electronic structure, and transport in non-fullerene/non-indacenodithienothiophene polymer: Y6 solar cells. J Am Chem Soc 142:14532–14547

    Article  CAS  Google Scholar 

  14. Zhu L, Zhang J, Guo Y, Yang C, Yi Y, Wei Z (2021) Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells. Angew Chem Int Ed 60:15348–15353

    Article  CAS  Google Scholar 

  15. Han G, Yi Y (2022) Molecular insight into efficient charge generation in low-driving-force nonfullerene organic solar cells. Acc Chem Res 55:869–877

    Article  CAS  Google Scholar 

  16. Yuan J, Zhang H, Zhang R et al (2020) Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem 6:2147–2161

    Article  CAS  Google Scholar 

  17. Wei Q, Yuan J, Yi Y, Zhang C, Zou Y (2020) Y6 and its derivatives: molecular design and physical mechanism. Natl Sci Rev 8:nwab121

    Article  Google Scholar 

  18. Xu X, Li K, Wei Q, Yuan J, Zou Y (2021) Organic solar cells based on non-fullerene small molecular acceptor Y6. Prog Chem 33:165–178

    CAS  Google Scholar 

  19. Bi P, Zhang S, Wang J, Ren J, Hou J (2021) The progress in organic solar cells: materials, physics and device engineering. Chin J Chem 39:2607–2625

    Article  CAS  Google Scholar 

  20. Li S, Li C, Shi M, Chen H (2020) New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett 5:1554–1567

    Article  CAS  Google Scholar 

  21. Karki A, Gillett A, Friend R, Nguyen T (2020) The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv Energy Mater 11:2003441

    Article  Google Scholar 

  22. Cui Y, Yao H, Zhang J et al (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10:2515

    Article  Google Scholar 

  23. Cui Y, Yao H, Zhang J et al (2020) Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater 32:1908205

    Article  CAS  Google Scholar 

  24. Jiang K, Wei Q, Lai J et al (2019) Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3:3020–3033

    Article  CAS  Google Scholar 

  25. Chai G, Chang Y, Zhang J et al (2021) Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy Environ Sci 14:3469–3479

    Article  CAS  Google Scholar 

  26. Chai G, Chang Y, Peng Z et al (2020) Enhanced hindrance from phenyl outer side chains on nonfullerene acceptor enables unprecedented simultaneous enhancement in organic solar cell performances with 16.7% efficiency. Nano Energy 76:105087

    Article  CAS  Google Scholar 

  27. Liu S, Yuan J, Deng W et al (2020) High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics 14:300–305

    Article  CAS  Google Scholar 

  28. Zhu C, Yuan J, Cai F et al (2020) Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy Environ Sci 13:2459–2466

    Article  CAS  Google Scholar 

  29. Zhou D, You W, Xu H, Tong Y, Hu B, Xie Y, Chen L (2020) Recent progress in ternary organic solar cells based on solution-processed non-fullerene acceptors. J Mater Chem A 8:23096–23122

    Article  CAS  Google Scholar 

  30. Xie L, Yang C, Zhou R, Wang Z, Zhang J, Lv K, Wei Z (2020) Ternary organic solar cells based on two non-fullerene acceptors with complimentary absorption and balanced crystallinity. Chin J Chem 38:935–940

    Article  CAS  Google Scholar 

  31. Zhong L, Gao L, Bin H et al (2017) High efficiency ternary nonfullerene polymer solar cells with two polymer donors and an organic semiconductor acceptor. Adv Energy Mater 7:1602215

    Article  Google Scholar 

  32. Hu H, Ghasemi M, Balar N et al (2019) Highly efficient, stable, and ductile ternary nonfullerene organic solar cells from a two-donor polymer blend. Adv Mater 31:1808279

    Article  Google Scholar 

  33. Zhu L, Zhang M, Xu J et al (2022) Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater 21:656–663

    Article  CAS  Google Scholar 

  34. Zhan L, Li S, Li Y et al (2022) Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 6:662–675

    Article  CAS  Google Scholar 

  35. Cui Y, Xu Y, Yao H et al (2021) Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater 33:2102420

    Article  CAS  Google Scholar 

  36. Huang H, Li X, Chen S et al (2019) Enhanced performance of ternary organic solar cells with a wide bandgap acceptor as the third component. J Mater Chem A 7:27423–27431

    Article  CAS  Google Scholar 

  37. Xue P, Xiao Y, Li T et al (2018) High-performance ternary organic solar cells with photoresponses beyond 1000 nm. J Mater Chem A 6:24210–24215

    Article  CAS  Google Scholar 

  38. Chen Y, Ye P, Jia X et al (2017) Tuning Voc for high performing organic ternary solar cells with non-fullerene acceptor alloys. J Mater Chem A 5:19697–19702

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51703049, 21975059) and Hebei Natural Science Foundation (No. B2021407003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingxing Shen or Yajie Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2955 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Pan, J., Wu, S. et al. Enhanced photovoltaic performance of PM6/Y6-based organic solar cells by a wide-bandgap small molecule acceptor. J Nanopart Res 25, 134 (2023). https://doi.org/10.1007/s11051-023-05787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05787-2

Keywords

Navigation