Skip to main content
Log in

Ternary TiO2/P-GQDs/AgI nanocomposites with n-p-n heterojunctions for enhanced visible photocatalysis

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

TiO2-based materials are important photocatalysts but the rapid recombination of photoexcited electron–hole pairs, and the wide band gap both limit their photocatalytic activities. In this work, p-type phosphorus-doped graphene quantum dots (P-GQDs, 5~20 nm) were combined with n-type TiO2 nanoparticles (20~50 nm) and n-type silver iodide (AgI, 100~200 nm) by a facile sonication and precipitation process to yield a novel ternary photocatalyst TiO2/P-GQDs/AgI with n-p-n heterojunctions. The morphologies, structures, optical properties, and chemical environments of photocatalysts were all studied. The resulting ternary photocatalyst exhibited enhanced visible photocatalytic activity toward the degradation of methyl orange (MO), estimated to 70.4-fold that of pure TiO2. By contrast, the photocatalytic activities of TiO2/GQDs with an n-n heterojunction, TiO2/P-GQDs with a p-n heterojunction, and TiO2/GQDs/AgI (30%) with an n-n-n heterojunction showed 4.4-fold, 5.3-fold, and 14.2-fold higher than those of TiO2. The electrochemical and optical measurements revealed that the enhanced photocatalytic activity was linked to promoted charge carrier separation by n-p-n heterojunctions coupled with the increased absorption in the visible region. Overall, the new band structure connected in series p-n heterojunctions looks promising as a highly efficient photodegradation system for future use in decontamination of polluted water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gągol M, Przyjazny A, Boczkaj G (2018) Wastewater treatment by means of advanced oxidation processes based on cavitation–a review. Chem Eng J 338:599–627

    Article  Google Scholar 

  2. Reddy PAK, Reddy PVL, Kwon E, Kim KH, Akter T, Kalagara S (2016) Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ Int 91:94–103

    Article  CAS  Google Scholar 

  3. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241

    Article  CAS  Google Scholar 

  4. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241

    Article  CAS  Google Scholar 

  5. Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interface Sci 309(2):464–469

    Article  CAS  Google Scholar 

  6. Nolan M (2011) Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials. Chem Commun 47(30):8617–8619

    Article  CAS  Google Scholar 

  7. Kim DS, Han SJ, Kwak SY (2007) Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J Colloid Interface Sci 316:85–91

    Article  CAS  Google Scholar 

  8. Luo Y, Li M, Hu G, Tang T, Wen J, Li X, Wang L (2018) Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites. Mater Res Bull 97:428–435

    Article  CAS  Google Scholar 

  9. Mahmoodi NM, Arami M, Limaee NY (2006) Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J Colloid Interface Sci 295:159–164

    Article  CAS  Google Scholar 

  10. Zalfani M, Hu ZY, Yu WB, Mahdouani M (2017) BiVO4/3DOM TiO2 photocatalyst: effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Appl Catal B-Environ 205:121–132

    Article  CAS  Google Scholar 

  11. Hou H, Gao F, Shang M, Wang L, Zheng J (2017) Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J Mater Sci-Mater El 28:3796–3805

    Article  CAS  Google Scholar 

  12. Ji L, Zhang Y, Miao S, Gong M, Liu X (2017) In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon 125:544–550

    Article  CAS  Google Scholar 

  13. Sabarinathan M, Harish S, Archana J, Navaneethan M, Ikeda H, Hayakawa Y (2017) Highly efficient visible-light photocatalytic activity of MoS2-TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv 7(40):24754–24763

    Article  CAS  Google Scholar 

  14. Feizpoor S, Habibi-Yangjeh A, Yubuta K, Vadivel S (2019) Fabrication of TiO2/CoMoO4/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light. Mater Chem Phys 224:10–21

    Article  CAS  Google Scholar 

  15. Mahmoodi NM, Arami M, Limaee NY (2006) Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J Colloid Interface Sci 295:159–164

    Article  CAS  Google Scholar 

  16. Zuo J, Jiang T, Zhao X, Xiong X, Xiao S, Zhu Z (2015) Preparation and application of fluorescent carbon dots. J Nanomater 2015:10–10

    Article  Google Scholar 

  17. Zhou L, Wang L, Zhang J, Lei J, Liu Y (2017) The preparation, and applications of gC3N4/TiO2 heterojunction catalysts-a review. Res Chem Intermed 43:2081–2101

    Article  CAS  Google Scholar 

  18. Roushani M, Mavaei M, Rajabi HR (2015) Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. J Mol Catal A: Chem 409:102–109

    Article  CAS  Google Scholar 

  19. Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K et al (2019) Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater 31:1808283

    Article  Google Scholar 

  20. Humayun M, Raziq F, Khan A, Luo W (2018) Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem Lett Rev 11(2):86–102

    Article  CAS  Google Scholar 

  21. Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A, Thakur VK (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769

    Article  CAS  Google Scholar 

  22. Safardoust-Hojaghan H, Salavati-Niasari M (2017) Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J Clean Prod 148:31–36

    Article  CAS  Google Scholar 

  23. Ou N, Li H, Lyu B, Gui B, Sun X, Qian D, Jia Y (2019) Facet-dependent interfacial charge transfer in TiO2/nitrogen-doped graphene quantum dots heterojunctions for visible-light driven photocatalysis. Catalysts 9:345

    Article  Google Scholar 

  24. Hou H, Gao F, Shang M, Wang L, Zheng J (2017) Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J Mater Sci Mater Electron 28:3796–3805

    Article  CAS  Google Scholar 

  25. Qian J, Shen C, Yan J, Xi F, Dong X, Liu J (2018) Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst. J Phys Chem C 122(1):349–358

    Article  CAS  Google Scholar 

  26. Sun W, Li Y, Shi W, Zhao X, Fang P (2011) Formation of AgI/TiO2 nanocomposite leads to excellent thermochromic reversibility and photostability. J Mater Chem 21:9263–9270

    Article  CAS  Google Scholar 

  27. Guo Z, Wu H, Li M, Tang T, Wen J, Li X (2020) Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Appl Surf Sci 526:146724

    Article  CAS  Google Scholar 

  28. Wen XJ, Shen CH, Fei ZH, Fang D, Liu ZT (2020) Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem Eng J 383:123083

    Article  CAS  Google Scholar 

  29. Li S, Hu S, Jiang W, Liu Y, Liu J, Wang Z (2017) Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity. J Colloid Interface Sci 501:156–163

    Article  CAS  Google Scholar 

  30. Wen XJ, Shen CH, Fei ZH, Fang D, Liu ZT (2020) Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem Eng J 383:123083

    Article  CAS  Google Scholar 

  31. Kohantorabi M, Moussavi G, Oulego P (2021) Synthesis of a novel, ternary AgI/CeO2@ g-C3N4 nanocomposite with exceptional stability and reusability for visible light-assisted photocatalytic reduction of hexavalent chromium. Appl Surf Sci 555:149692

    Article  CAS  Google Scholar 

  32. Jatav N, Kuntail J, Khan D, De AK, Sinha I (2021) AgI/CuWO4 Z-scheme photocatalyst for the degradation of organic pollutants: experimental and molecular dynamics studies. J Colloid Interf Sci 599:717–729

    Article  CAS  Google Scholar 

  33. Qian T, Zhang Y, Cai J, Cao W, Liu T, Chen Z (2021) Decoration of amine functionalized zirconium metal organic framework/silver iodide heterojunction on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading antibiotics. J Colloid Interf Sci 603:582–593

    Article  CAS  Google Scholar 

  34. Akhundi A, Habibi-Yangjeh A (2016) Ternary magnetic g-C3N4/Fe3O4/AgI photocatalyst: novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light. Mater Chem Phys 174:59–69

    Article  CAS  Google Scholar 

  35. Min S, Hou J, Lei Y, Ma X, Lu G (2017) Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Appl Surf Sci 396:1375–1382

    Article  CAS  Google Scholar 

  36. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi-R 15:627–637

    Article  CAS  Google Scholar 

  37. Wang H, Liang Y, Liu L, Hu J, Cui W (2018) Highly ordered TiO2 nanotube arrays wrapped with g-C3N4 photocatalyst for efficient charge separation and increased photoelectrocatalytic degradation of phenol. J Hazard Mater 344:369–380

    Article  CAS  Google Scholar 

  38. Liang Y, Wang X, An W, Li Y, Hu J, Cui W (2019) Ag-C3N4@ppy-rGO 3D structure hydrogel for efficient photocatalysis. Appl Surf Sci 466:666–672

    Article  CAS  Google Scholar 

  39. Xue B, Sun T, Wu J, Mao F, Yang W (2015) AgI/TiO2 nanocomposites ultrasound-assisted preparation, visible-light induced photocatalytic degradation of methyl orange and antibacterial activity. Ultrason Sonochem 22:1–6

    Article  Google Scholar 

  40. Saravanan R, Manoj D, Qin J, Naushad M (2018) Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Saf Environ 120:339–347

    Article  CAS  Google Scholar 

  41. Al-Mamun MR, Karim MN, Nitun NA, Kader S (2021) Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. Environ Technol Inno 22:101537

    Article  CAS  Google Scholar 

  42. Song M, Sun D, Guan R, Li J, Zhai H (2021) Photocatalytic performance and mechanism study of high specific area TiO2 combined with g-C3N4. Chinese J Chem Phys 34:210–216

    Article  CAS  Google Scholar 

  43. Qu X, Yi Y, Qiao F, Liu M, Wang X, Yang R, Meng H (2018) TiO2/BiOI/CQDs: enhanced photocatalytic properties under visible-light irradiation. Ceram Int 44:1348–1355

    Article  CAS  Google Scholar 

  44. Lu G, Liu X, Zhang P, Xu S, Gao Y, Yu S (2021) Preparation and photocatalytic studies on nanocomposites of 4-hydroxylphenyl-substituted corrole/TiO2 towards Methyl Orange photodegradation. Chemistry Select 6(27):6841–6846

    CAS  Google Scholar 

  45. Naik B, Hazra S, Dayananda D (2015) Preparation of TiO2 nanoparticle loaded MCM-41 and study of its photo-catalytic activity towards decolorization of methyl orange. J Nanosci Nanotechno 15:6669–6674

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (no. 12164013), the Natural Science Foundation of Guangxi Province (nos. 2020GXNSFAA297268 and 2020GXNSFBA297125), the Science and Technology Base and Talent Special Project of Guangxi Province (no. AD21220029), and Innovation Project of Guangxi Graduate Education (no. YCSW2022331).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Li or Shuai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, C., Liu, Z., Li, F. et al. Ternary TiO2/P-GQDs/AgI nanocomposites with n-p-n heterojunctions for enhanced visible photocatalysis. J Nanopart Res 25, 128 (2023). https://doi.org/10.1007/s11051-023-05775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05775-6

Keywords

Navigation