Skip to main content
Log in

Modeling the lattice expansion and contraction of nanocrystals in different interface environments

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The lattice strain ε(D) function of nanocrystals within different interface environments was modeled. For nanoparticles and nanocrystals embedded in incoherent interfaces, the lattice shrinks with the decrease of size, resulting in the reduction of ε(D). For nanostructure materials and the nanocrystals embedded in the coherent interfaces, ε(D) increases due to lattice expansion. These changes in interfacial lattice parameters depend on the sign of interfacial stress fss, i.e., the lattice contracts when fss > 0 and expands when fss < 0. In addition, we also give a criterion to judge the sign of fss, fss is negative when the surface stress f of the matrix is larger than that of the embedded nanocrystals, and vice versa. The variation in the sign of fss is also applicable to explain the thermal stability of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu Z, Xiao FS, Purnell SK, Alexeev O, Kawi S, Deutsch SE, Gates BC (1994) Size-dependent catalytic activity of supported metal clusters. Nature 372(6504):346–348

    Article  CAS  Google Scholar 

  2. Zhou SM, He LF, Zhao SY, Guo YQ, Zhao JY, Shi L (2009) Size-dependent structural and magnetic properties of LaCoO3 nanoparticles. J Phys Chem C 113(31):13522–13526

    Article  CAS  Google Scholar 

  3. van Buuren T, Dinh LN, Chase LL, Siekhaus WJ, Terminello LJ (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett 80(17):3803–3806

    Article  Google Scholar 

  4. Liu W, Zhao YH, Li Y, Jiang Q, Lavernia EJ (2009) Enhanced hydrogen storage on Li-dispersed carbon nanotubes. J Phys Chem C 113(5):2028–2033

    Article  CAS  Google Scholar 

  5. Xiao BB, Jiang XB, Yang XL, Jiang Q, Zheng F (2016) The segregation resistance of the Pt2ML/Os/Pd3Al sandwich catalyst for oxygen reduction reaction: a density functional theory study. Phys Chem Chem Phys 18(43):30174–30182

    Article  CAS  Google Scholar 

  6. Wang X, Su J, Chen H, Li GD, Shi ZF, Zou HF, Zou XX (2017) Ultrathin In2O3 nanosheets with uniform mesopores for highly sensitive nitric oxide detection. ACS Appl Mater Inter 9(19):16335–16342

    Article  CAS  Google Scholar 

  7. Mays CW, Vermaak JS, Kuhlmann-Wilsdorf D (1968) On surface stress and surface tension: II. Determination of the surface stress of gold. Surf Sci 12(2):134–140

    Article  CAS  Google Scholar 

  8. Wasserman HJ, Vermaak JS (1970) On the determination of a lattice contraction in very small silver particles. Surf Sci 22(1):164–172

    Article  CAS  Google Scholar 

  9. Wasserman HJ, Vermaak JS (1972) On the determination of the surface stress of copper and platinum. Surf Sci 32(1):168–174

    Article  CAS  Google Scholar 

  10. Montano PA, Schulze W, Tesche B, Shenoy GK, Morrison TI (1984) Extended X-ray-absorption fine-structure study of Ag particles isolated in solid argon. Phys Rev B 30(2):672–677

    Article  CAS  Google Scholar 

  11. Montano PA, Zhao J, Ramanathan M, Shenoy GK, Schulze W, Urban J (1989) Structure of silver microclusters. Chem Phys Lett 164(2):126–130

    Article  CAS  Google Scholar 

  12. Medasani B, Park YH, Vasiliev I (2007) Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys Rev B 75(23):235436

    Article  Google Scholar 

  13. Solliard C, Flueli M (1985) Surface stress and size effect on the lattice parameter in small particles of gold and platinum. Surf Sci 156:487–494

    Article  CAS  Google Scholar 

  14. Liang LH, Li JC, Jiang Q (2003) Size-dependent melting depression and lattice contraction of Bi nanocrystals. Physica B 334(1):49–53

    Article  CAS  Google Scholar 

  15. Kellermann G, Craievich AF (2002) Structure and melting of Bi nanocrystals embedded in a B2O3-Na2O glass. Phys Rev B 65(13):134204

    Article  Google Scholar 

  16. Yu XF, Liu X, Zhang K, Hu ZQ (1999) The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique. J Phys D: Appl Phys 11(4):937–944

    CAS  Google Scholar 

  17. Apai G, Hamilton JF, Stohr J, Thompson A (1979) Extended X-ray-absorption fine structure of small Cu and Ni clusters: binding-energy and bond-length changes with cluster size. Phys Rev Lett 43(2):165–169

    Article  CAS  Google Scholar 

  18. da Silva EZ, Antonelli A (1996) Size dependence of the lattice parameter for Pd clusters: a molecular-dynamics study. Phys Rev B 54(23):17057–17060

    Article  Google Scholar 

  19. Lamber R, Wetjen S, Jaeger NI (1995) Size dependence of the lattice parameter of small palladium particles. Phys Rev B 51(16):10968–10971

    Article  CAS  Google Scholar 

  20. Tsunekawa S, Ishikawa K, Li ZQ, Kawazoe Y, Kasuya A (2000) Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett 85(16):3440–3443

    Article  CAS  Google Scholar 

  21. Nafday D, Sarkar S, Ayyub P, Saha-Dasgupta T (2018) A reduction in particle size generally causes body-centered-cubic metals to expand but face-centered-cubic metals to contract. ACS Nano 12(7):7246–7252

    Article  CAS  Google Scholar 

  22. Manuel DP, Péter Á, Karsten A (2012) Size-dependent lattice expansion in nanoparticles: reality or anomaly? ChemPhysChem 13(10):2443–2454

    Article  Google Scholar 

  23. Qin W, Szpunar JA (2005) Origin of lattice strain in nanocrystalline materials. Phil Mag Lett 85(12):649–656

    Article  CAS  Google Scholar 

  24. Shen TD, Zhang JZ, Zhao YS (2008) What is the theoretical density of a nanocrystalline material? Acta Mater 56(14):3663–3671

    Article  CAS  Google Scholar 

  25. Oehl N, Michalowski P, Knipper M, Kolny-Olesiak J, Plaggenborg T, Parisi J (2014) Size-dependent strain of Sn/SnOx core/shell nanoparticles. J Phys Chem C 118(51):30238–30243

    Article  CAS  Google Scholar 

  26. Lewin E, Råsander M, Klintenberg M, Bergman A, Eriksson O, Jansson U (2010) Design of the lattice parameter of embedded nanoparticles. Chem Phys Lett 496(1):95–99

    Article  CAS  Google Scholar 

  27. Zhong J (2000) Thesis, Institute of Metal Research, Chinese Academy of Sciences

  28. Jiang Q, Zhang Z, Li JC (2000) Melting thermodynamics of nanocrystals embedded in a matrix. Acta Mater 48(20):4791–4795

    Article  CAS  Google Scholar 

  29. Jiang XB, Xiao BB, Lan R, Gu XY, Sheng HC, Yang HY, Zhang XH (2018) Definition of interface parameter and its application on estimating the thermal stability of metallic nanoparticles. J Phys Chem C 122(45):26260–26266

    Article  CAS  Google Scholar 

  30. Buttard D, Dolino G, Faivre C, Halimaoui A, Comin F, Formoso V, Ortega L (1999) Porous silicon strain during in situ ultrahigh vacuum thermal annealing. J Appl Phys 85(10):7105–7111

    Article  CAS  Google Scholar 

  31. Stoneham AM (1999) Comment on ‘The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique’. J Phys D: Appl Phys 11(42):8351–8352

    CAS  Google Scholar 

  32. Jiang Q, Liang LH, Zhao DS (2001) Lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B 105(27):6275–6277

    Article  CAS  Google Scholar 

  33. Ouyang G, Zhu WG, Sun CQ, Zhu ZM, Liao SZ (2010) Atomistic origin of lattice strain on stiffness of nanoparticles. Phys Chem Chem Phys 12(7):1543–1549

    Article  CAS  Google Scholar 

  34. Sun CQ (2014) Skin bond relaxation and nanosolid densification. Springer, Singapore, pp 223–238

    Book  Google Scholar 

  35. Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Ch 35(1):1–159

    Article  Google Scholar 

  36. Omar MS (2013) Critical size structure parameters for Au nanoparticles. Adv Mater Res 626:976–979

    Article  Google Scholar 

  37. Omar MS (2016) Structural and thermal properties of elementary and binary tetrahedral semiconductor nanoparticles. Int J Thermophys 37:11

    Article  Google Scholar 

  38. Omar MS (2012) Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Mater Res Bull 47(11):3518–3522

    Article  CAS  Google Scholar 

  39. Abdullah BJ, Omar MS, Jiang Q (2018) Size dependence of the bulk modulus of Si nanocrystals. Sādhanā 43:174

    Article  Google Scholar 

  40. Omar MS, Taha HT (2009) Lattice dislocation in Si nanowires. Physica B 404(23–24):5203–5206

    Article  CAS  Google Scholar 

  41. Zhu YF, Zheng WT, Jiang Q (2009) Modeling lattice expansion and cohesive energy of nanostructured materials. Appl Phys Lett 95(8):083110

    Article  Google Scholar 

  42. Jiang Q, Zhao DS, Zhao M (2001) Size-dependent interface energy and related interface stress. Acta Mater 49(16):3143–3147

    Article  CAS  Google Scholar 

  43. Sheng HC, Gao R, Xiao BB, Jiang XB (2021) Prediction of the surface and interface stress of metallic elements. Vacuum 192:110428

    Article  CAS  Google Scholar 

  44. Jiang XB, Xiao BB, Lan R, Gu XY, Zhang XH, Sheng HC (2019) Estimation of the solid-liquid interface energy for metal elements. Comp Mater Sci 170:109174

    Article  CAS  Google Scholar 

  45. Yang CC, Jiang Q (2005) Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater 53(11):3305–3311

    Article  CAS  Google Scholar 

  46. Lang XY, Zheng WT, Jiang Q (2006) Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures. Phys Rev B 73(22):224444

    Article  Google Scholar 

  47. Li XL (2014) Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology 25(18):185702

    Article  Google Scholar 

  48. Zhao M, Yao X, Zhu YF, Jiang Q (2018) Effect of the interface energy on the pressure-induced superheating of metallic nanoparticles embedded in a matrix. Scripta Mater 142:23–27

    Article  CAS  Google Scholar 

  49. Wang YR, Tang K, Yao X, Jin B, Zhu YF, Jiang Q (2018) Interface effect on the cohesive energy of nanostructured materials and substrate-supported nanofilms. Dalton 47(14):4856–4865

    Article  CAS  Google Scholar 

  50. Zhao M, Jiang Q (2004) Melting and surface melting of low-dimensional In crystals. Solid State Commun 130(1):37–39

    Article  CAS  Google Scholar 

  51. Jiang Q, Liang LH, Li JC (2003) Thermodynamic superheating of low-dimensional metals embedded in matrix. Vacuum 72(3):249–255

    Article  CAS  Google Scholar 

  52. Banerjee R, Sperling EA, Thompson GB, Fraser HL, Bose S, Ayyub P (2003) Lattice expansion in nanocrystalline niobium thin films. Appl Phys Lett 82(24):4250–4252

    Article  CAS  Google Scholar 

  53. Qian LH, Wang SC, Zhao YH, Lu K (2002) Microstrain effect on thermal properties of nanocrystalline Cu. Acta Mater 50(13):3425–3434

    Article  CAS  Google Scholar 

  54. Ohshima K, Yatsuya S, Harada J (1981) Characterization of ultra fine palladium particles with the mean size of 20 Å by X-ray diffraction. J Phys Soc Jpn 50:3071–3074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobao Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, H., Yin, T., Xiao, B. et al. Modeling the lattice expansion and contraction of nanocrystals in different interface environments. J Nanopart Res 24, 255 (2022). https://doi.org/10.1007/s11051-022-05634-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05634-w

Keywords

Navigation