Skip to main content

Advertisement

Log in

Synthesis of polymer protected Pd–Ag/ZnO catalysts for phenylacetylene hydrogenation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A simple and environmentally friendly method, based on sequential adsorption of polyacrylamide (PAM) and transition metal ions (Pd2+, Ag+) on zinc oxide precipitated from water solution, was used to synthesize supported mono- and bimetallic catalysts with various Pd:Ag ratios. The catalyst characterization results indicated that PAM and metal ions are completely adsorbed by zinc oxide, forming polymer-stabilized Pd and Ag nanoparticles of 1–3 nm in size, evenly distributed on the support surface. The catalysts were studied in the hydrogenation of phenylacetylene under mild conditions (0.1 MPa, 40 °C). Although Ag-free 1%Pd-PAM/ZnO catalyst presents an interesting catalytic performance (in terms of activity, selectivity, and stability), among PAM-modified catalysts the optimal was 1%Pd–Ag(3:1)-PAM/ZnO, presenting a selectivity to styrene of 88% at 91% conversion of phenylacetylene. For comparison, similar Pd–Ag (3:1) bimetallic catalysts modified with polysaccharides, such as pectin (Pec), chitosan (Chit), and 2-hydroxyethylcellulose (HEC), were studied in the hydrogenation process. The catalysts demonstrated nearly the same selectivity to styrene. The activity of the catalysts decreases in the following order: 1%Pd–Ag(3:1)-HEC/ZnO > 1%Pd–Ag(3:1)-PAM/ZnO > 1%Pd–Ag(3:1)-Pec/ZnO > 1%Pd–Ag(3:1)-Chit/ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Blaser HU, Schnyder A, Steiner H, Rossler F, Baumeister P (2008) Handbook of Heterogeneous Catalysis. In: Ertl G, Knozinger H, Scüth F, Weitkamp J (eds) Selective Hydrogenation of Functionalized Hydrocarbons. Wiley-VCH Verlag, Weinheim, pp 3284–3308. https://doi.org/10.1002/9783527610044.hetcat0167

  2. Cordoba M, Coloma-Pascual F, Quiroga ME, Lederhos CR (2019) Olefin purification and selective hydrogenation of alkynes with low loaded Pd nanoparticle catalysts. Ind Eng Chem Res 58:17182–17194. https://doi.org/10.1021/acs.iecr.9b02081

    Article  CAS  Google Scholar 

  3. Huang F, Jia Zh, Diao J, Yuan H, Da Su, Liu H (2019) Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. J Energy Chem 33:31–36. https://doi.org/10.1016/j.jechem.2018.08.006

    Article  Google Scholar 

  4. Nikolaev SA, Zanaveskin LN, Smirnov VV, Averyanov VA, Zanaveskin KL (2009) Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russ Chem Rev 78:231–247. https://doi.org/10.1070/RC2009v078n03ABEH003893

    Article  CAS  Google Scholar 

  5. Yang L, Yu S, Peng C, Fang X, Cheng Z, Zhou Z (2019) Semihydrogenation of phenylacetylene over nonprecious Ni-based catalysts supported on AlSBA-15. J Catal 370:310–320. https://doi.org/10.1016/j.jcat.2019.01.012

    Article  CAS  Google Scholar 

  6. Markov PV, Mashkovsky IS, Bragina GO, Wärnå J, Gerasimov EY, Bukhtiyarov VI, Stakheev AYu, Murzin DY (2019) Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: experimental data and theoretical analysis. Chem Eng J 358:520–530. https://doi.org/10.1016/j.cej.2018.10.016

    Article  CAS  Google Scholar 

  7. Mallat T, Baiker A (2000) Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl Catal A Gen 200:3–22. https://doi.org/10.1016/S0926-860X(00)00645-1

    Article  CAS  Google Scholar 

  8. Rassolov AV, Bragina GO, Baeva GN, Smirnova NS, Kazakov AV, Mashkovsky IS, Stakheev AYu (2019) Liquid-phase hydrogenation of internal and terminal alkynes on Pd–Ag/Al2O3 catalyst. Kinet Catal 60:642–649. https://doi.org/10.1134/S0023158419050069

    Article  CAS  Google Scholar 

  9. Lindlar H (1952) Ein neuer Katalysator für selektive Hydrierungen. Helv Chim Acta 35:446–450. https://doi.org/10.1002/hlca.19520350205

    Article  CAS  Google Scholar 

  10. Hori J, Murata K, Sugai T, Shinohara H, Noyori R, Arai N, Kurono N, Phkuma T (2009) Highly active and selective semihydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system. Adv Synth Catal 351:3143–3149. https://doi.org/10.1002/adsc.200900721

    Article  CAS  Google Scholar 

  11. Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, Alothman ZA, Mola GT (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci 31:257–269. https://doi.org/10.1016/j.jksus.2017.06.012

    Article  Google Scholar 

  12. Wu W, Zhang W, Long Y, Qin J, Wen H, Ma J (2018) Ni modified Pd nanoparticles immobilized on hollow nitrogen doped carbon spheres for the simehydrogenation of phenylacetylene. J Colloid Interface Sci 531:642–653. https://doi.org/10.1016/j.jcis.2018.07.069

    Article  CAS  Google Scholar 

  13. Jin Z, Xiao H, Zhou W, Zhang D, Peng X (2017) Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer. Roy Soc Open Sci 4:171414. https://doi.org/10.1098/rsos.171414

    Article  CAS  Google Scholar 

  14. Belousov OV, Tarabanko VE, Borisov RV, Simakova IL, Zhyzhaev AM, Tarabanko N, Isakova VG, Parfenov VV, Ponomarenko IV (2018) Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials. React Kinet Mech Cat 127:25–39. https://doi.org/10.1007/s11144-018-1430-0

    Article  CAS  Google Scholar 

  15. da Silva FP, Fiorio JL, Gonçalves RV, Teixeira-Neto E, Rossi LM (2018) Synergic effect of copper and palladium for selective hydrogenation of alkynes. Ind Eng Chem Res 57:16209–16216. https://doi.org/10.1021/acs.iecr.8b03627

    Article  CAS  Google Scholar 

  16. Betti C, Torres G, Maccarrone MJ, Lederhos C, Quiroga M, Yori J, Vera C (2019) Kinetic study of the selective hydrogenation of 3-hexyne over W-Pd/alumina catalysts. React Kinet Mech Catal 127:259–281. https://doi.org/10.1007/s11144-019-01546-4

    Article  CAS  Google Scholar 

  17. Yang K, Chen X, Wang L, Zhang L, Jin S, Liang C (2017) SBA-15-supported metal silicides prepared by chemical vapor deposition as efficient catalysts towards the semihydrogenation of phenylacetylene. ChemCatChem 9:1337–1342. https://doi.org/10.1002/cctc.201601653

    Article  CAS  Google Scholar 

  18. Pang M, Shao Z, Wang X, Liang C, Xia W (2015) Toward economical purification of styrene monomers: eggshell Mo2C for front-end hydrogenation of phenylacetylene. AIChE J 61:2522–2531. https://doi.org/10.1002/aic.14822

    Article  CAS  Google Scholar 

  19. Yang K, Chen X, Guan J, Liang C (2015) Nickel silicides prepared from organometallic polymer as efficient catalyst towards hydrogenation of phenylacetylene. Catal Today 246:176–183. https://doi.org/10.1016/j.cattod.2014.09.027

    Article  CAS  Google Scholar 

  20. Chen X, Li M, Guan J, Wang X, Williams CT, Liang C (2012) Nickel–silicon intermetallics with enhanced selectivity in hydrogenation reactions of cinnamaldehyde and phenylacetylene. Ind Eng Chem Res 51:3604–3611. https://doi.org/10.1021/ie202227j

    Article  CAS  Google Scholar 

  21. Rassolov AV, Markov PV, Bragina GO, Baeva GN, Mashkovskii IS, Yakushev IA, Vargaftik MN, Stakheev AY (2016) Catalytic properties of nanostructured Pd–Ag catalysts in the liquid-phase hydrogenation of terminal and internal alkynes. Kinet Catal 57:853–858. https://doi.org/10.1134/s0023158416060124

    Article  CAS  Google Scholar 

  22. Shen Y, Yin K, An C, Xiao Z (2018) Design of a difunctional Zn-Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene. Appl Surf Sci 456:1–6. https://doi.org/10.1016/j.apsusc.2018.06.091

    Article  CAS  Google Scholar 

  23. Patarroyo J, Delgado JA, Merkoçi F, Genç A, Sauthier G, Llorca J, Arbiol J, Bastus NG, Godard C, Claver C, Puntes V (2019) Hollow PdAg-CeO2 heterodimer nanocrystals as highly structured heterogeneous catalysts. Sci Rep 9:18776–18783. https://doi.org/10.1038/s41598-019-55105-x

    Article  CAS  Google Scholar 

  24. Wowsnick G, Teschner D, Armbruster M, Kasatkin I, Girgsdies F, Grin Y, Schlogl R, Behrens M (2014) Surface dynamics of the intermetallic catalyst Pd2Ga, part II – reactivity and stability in liquid-phase hydrogenation of phenylacetylene. J Catal 309:221–230. https://doi.org/10.1016/j.jcat.2013.09.018

    Article  CAS  Google Scholar 

  25. Chen L, Huang B, Qiu X, Wang X, Luque R, Li Y (2016) Seed-mediated growth of MOF-encapsulated Pd@Ag core-shell nanoparticles: toward advanced room temperature nanocatalysts. Chem Sci 7:228–233. https://doi.org/10.1039/C5SC02925B

    Article  CAS  Google Scholar 

  26. Zhang R, Xue M, Wang B, Ling L, Fan M (2019) C2H2 selective hydrogenation over the M@Pd and M@Cu (M = Au, Ag, Cu, and Pd) core−shell nanocluster catalysts: the effects of composition and nanocluster size on catalytic activity and selectivity. J Phys Chem C 123:16107–16117. https://doi.org/10.1021/acs.jpcc.9b01757

    Article  CAS  Google Scholar 

  27. Zharmagambetova AK, Zamanbekova AT, Darmenbayeva AS, Auyezkhanova AS, Jumekeyeva AI, Talgatov ET (2017) Effect of polymers on the formation of nanosized palladium catalysts and their activity and selectivity in the hydrogenation of acetylenic alcohols. Theor Exp Chem 53:265–269. https://doi.org/10.1007/s11237-017-9524-8

    Article  CAS  Google Scholar 

  28. Zharmagambetova AK, Seitkalieva KS, Talgatov ET, Auezkhanova AS, Dzhardimalieva GI, Pomogailo AD (2016) Polymer modified supported palladium catalysts for the hydrogenation of acetylene compounds. Kinet Catal 57:360–367. https://doi.org/10.1134/S0023158416030174

    Article  CAS  Google Scholar 

  29. Wolfson A, Levy-Ontman O (2020) Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. Mol Catal 493:111048–111061. https://doi.org/10.1016/j.mcat.2020.111048

    Article  CAS  Google Scholar 

  30. Muhammad A, Lee D, Shin Y, Park J (2021) Recent progress in polysaccharide aerogels: their synthesis, application, and future outlook. Polymers 13:1347–1377. https://doi.org/10.3390/polym13081347

    Article  CAS  Google Scholar 

  31. Boily J-F, Seward TM, Charnock JM (2007) The hydrolysis and precipitation of Pd(II) in 0.6 mol kg-1 NaCl: a potentiometric, spectrophotometric, and EXAFS study. Geochim Cosmochim Acta 71:4834–4845. https://doi.org/10.1016/j.gca.2007.08.015

    Article  CAS  Google Scholar 

  32. Talgatov ET, Auezkhanova AS, Kapysheva UN, Bakhtiyrova SK, Zharmagambetova AK (2016) Synthesis and detoxifying properties of pectin-montmorillonite composite. J Inorg Organomet Polym 26:1387–1391. https://doi.org/10.1007/s10904-016-0422-7

    Article  CAS  Google Scholar 

  33. Murugan R, Mohan S, Bigotto A (1998) FTIR and polarised raman spectra of acrylamide and polyacrylamide. J Korean Phys Soc 32:505

    CAS  Google Scholar 

  34. Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833. https://doi.org/10.1021/la301232r

    Article  CAS  Google Scholar 

  35. Wang J, An C, Zhang M, Qin C, Ming X, Zhang Q (2012) Photochemical conversion of AgCl nanocubes to hybrid AgCl-Ag nanoparticles with high activity and long-term stability towards photocatalytic degradation of organic dyes. Can J Chem 90:858–864. https://doi.org/10.1139/v2012-079

    Article  CAS  Google Scholar 

  36. Chen X, Shi C, Wang XB, Li W-Y, Liang C (2021) Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Commun Chem 4:175. https://doi.org/10.1038/s42004-021-00612-0

    Article  CAS  Google Scholar 

  37. Hub S, Hilaire L, Touroude R (1988) Hydrogenation of But-1-yne and But-1-ene on palladium catalysts particle size effect. Appl Catal 36:307–322. https://doi.org/10.1016/S0166-9834(00)80124-4

    Article  CAS  Google Scholar 

  38. Nosowa LV, Stenin MV, Nogin YN, Ryndin YA (1992) EXAFS and XPS studies of the influence of metal particle size, nature of support and H, and CO adsorption on the structure and electronic properties of palladium. Appl Surf Sci 55:43–48. https://doi.org/10.1016/0169-4332(92)90379-C

    Article  Google Scholar 

  39. Wu T, Kaden WE, Kunkel WA, Anderson SL (2009) Size-dependent oxidation of Pdn (n≤13) on alumina/NiAl(110): correlation with Pd core level binding energies. Surf Sci 603:2764–2770. https://doi.org/10.1016/j.susc.2009.07.014

    Article  CAS  Google Scholar 

  40. Wang S, Xin Z, Huang X, Yu W, Niu S, Shao L (2017) Nanosizing Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Phys Chem Chem Phys 19:6164–6168. https://doi.org/10.1039/C6CP08805h

    Article  CAS  Google Scholar 

  41. Wang X, Keane MA (2019) Gas phase selective hydrogenation of phenylacetylene to styrene over Au/Al2O3. J Chem Technol Biotechnol 94:3772–3779. https://doi.org/10.1002/jctb.6002

    Article  CAS  Google Scholar 

  42. Bukhtiyarov VI, Slin’ko MG, (2001) Metallic nanosystems in catalysis. Russ Chem Rev 70:147–159. https://doi.org/10.1070/rc2001v070n02abeh000637

    Article  CAS  Google Scholar 

  43. Karakhanov EA, Aksenov IA, Kardashev SV, Maksimov AL, Putilin FN, Shatokhin AN, Savilov SV (2013) Ultra-low palladium catalysts for phenylacetylene semihydrogenation: Synthesis by modified pulsed laser ablation–deposition. Appl Catal A Gen 464:253–260. https://doi.org/10.1016/j.apcata.2013.05.045

    Article  CAS  Google Scholar 

  44. Zharmagambetova AK, Talgatov ET, Auyezkhanova AS, Tumabayev NZ, Bukharbayeva FU (2020) Effect of polyvinylpyrrolidone on the catalytic properties of Pd/γ-Fe2O3 in phenylacetylene hydrogenation. React Kinet Mech Cat 131:153–166. https://doi.org/10.1007/s11144-020-01857-x

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the State Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grants Nos. AP09563383 and AP09259638). JMLN thanks also Spanish Government for financial support (CRTl2018-099668-B-C21 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assemgul Auyezkhanova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharmagambetova, A., Auyezkhanova, A., Talgatov, E. et al. Synthesis of polymer protected Pd–Ag/ZnO catalysts for phenylacetylene hydrogenation. J Nanopart Res 24, 236 (2022). https://doi.org/10.1007/s11051-022-05621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05621-1

Keywords

Navigation