Skip to main content
Log in

Comparative study of growth responses, photosynthetic pigment content, and gene expression pattern in tobacco plants treated with ZnO nano and ZnO bulk particles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The production and use of nanoparticles (NPs) have increased dramatically in recent decades, releasing them into the environment. Pollution of soil, water, and air with these substances affects growth and development of all types of living organisms specially the plants because they are immobile and cannot move away from environmental stresses. Among the most commonly used NPs with a great ecological impact are ZnO NPs. In the present work, we studied the effects of different concentrations of ZnO NPs (0, 25, 50, 100, and 200 mg/L) on an important crop plant, Nicotiana tabacum L., which is also a commonly used model organism in the research of abiotic stress, using biochemical, physiological, and molecular approaches and compared them with the effects of bulk ZnO particles. According to the results, the form of particles and their concentration play an important role in response of plants to the treatment conditions. In fact, ZnO NPs had relatively more pronounced impacts than bulk particles on most plant features, and this was dose dependently. It was observed that ZnO NPs in lower concentration (25 mg/L) provoked the plant growth more than bulk particles which was in accordance with higher photosynthetic pigments content observed in this concentration. Furthermore, the expression of photosynthesis-related genes, i.e., CHLΙ, LHCa/b, and RSSU, as well as the amount of IAA and GA phytohormones, was the highest at 25 mg/L NPs. Further studies are required to better understand the exact mechanism of action of these particles including their entrance mode in to the plant cell and cellular localization, their transportation within the whole plant, and the molecular pathways affected by these particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  2. Faizan M, Hayat S, Pichtel J (2020) Effects of zinc oxide nanoparticles on crop plants: a perspective analysis. Agriculture Review 41:83–99. https://doi.org/10.1007/978-3-0.30-33996-8-4

    Article  Google Scholar 

  3. Cvjetko P, Zovko M, Stefanic PP, Biba R, Tkalec M, Domijan A-M, Vrcek IV, Letofsky-Papst I, Sikic S, Balen B (2017) Phytotoxic effects particles in tobacco plants. Environ Sci Pollut Res 25(6):5590–5602. https://doi.org/10.1007/s113561709288

    Article  Google Scholar 

  4. Plaksenkova I, Kokina I, Petrova A, Jermalonoka M, Gerbreders V, Krasovska M (2020) The impact of zinc oxide nanoparticles on cytotoxicity, genotoxicity and miRNA expression in barley (Hordeum vulgare L.) seedlings. Sci World J. https://doi.org/10.1155/2020/6649746

    Article  Google Scholar 

  5. Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5:6488–6497. https://doi.org/10.1080/17458081003649648

    Article  CAS  Google Scholar 

  6. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. https://doi.org/10.1021/es901695c

    Article  CAS  Google Scholar 

  7. Akansha S, Deepak G, Rakesh KS, Vishnu D, Tatiana M, Marina V, Sudhakar S, Manjoi S (2021) Effect on ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants 10:2556. https://doi.org/10.3390/plants10122556

    Article  CAS  Google Scholar 

  8. Xia T, Li N, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150. https://doi.org/10.1146/annurev.publhealth.031308.100155

    Article  Google Scholar 

  9. Shvedova A, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Ann Rev Pharmacol 50:63–88. https://doi.org/10.1146/annurev.pharmtox.010909.105819

    Article  CAS  Google Scholar 

  10. Jitao LV, Peterchristie, (2019) Uptake, translocation and transformation of metal-based nanoparticles in plants: recent advanced and methodological challenges. Environ Sci Nano 6:4159. https://doi.org/10.1039/C8EN00645H

    Article  Google Scholar 

  11. Amit K, Indrakant KS, Archana S (2021) The role of zinc oxide nanoparticles in plants: a critical appraisal.Nanomater Biointeraction Cell, Organismal Syst Level249–267. https://doi.org/10.1007/978-3-030-65792-5_10

  12. Thounaojam TC, Meetei TT, Devi YB et al (2021) Zinc oxide nanoparticles (ZnO-NPs): a promising nanoparticle in renovating plant science. Acta Physiol Plant 43:136. https://doi.org/10.1007/s11738-021-03307-0

    Article  CAS  Google Scholar 

  13. Peralta-Videal JR, Zhao L, Lopez-Moreno ML (2011) Nanomaterials and the environment: a review for the biennium. Natl Libr Med 186(1):1–15. https://doi.org/10.1016/j.jhazmat.2010.11.020

    Article  CAS  Google Scholar 

  14. Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–11064. https://doi.org/10.1021/es402209w

    Article  CAS  Google Scholar 

  15. Dietz K-J, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589. https://doi.org/10.1016/j.tplants.2011.08.003

    Article  CAS  Google Scholar 

  16. Zhao LJ, Peralta-Videa J, Ren MH, Varela-Ramirez A, Hernandez-Viezcas JA, Aguilera RJ, Gardea Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microsprobe and confocal microscopy studies. Chem Eng J 184:1–8. https://doi.org/10.1016/j.cej.2012.01.041

    Article  CAS  Google Scholar 

  17. Wang XP, QQ L, Pei ZM, Wang SC (2018) Effects of zinc oxide nanoparticles on the growth, photosynthetic traits and antioxidative enzymes in tomato plants. Biologia Plantarum 62:301808. https://doi.org/10.1007/s10535-018-0813-4

  18. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061. https://doi.org/10.1016/j.scitotenv.2010.03.031

    Article  CAS  Google Scholar 

  19. Zhao L, Sun Y, Hernandez-Viezcas J, Servin AD, Hong J, Niu G (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951. https://doi.org/10.1021/jf404328e

    Article  CAS  Google Scholar 

  20. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 50:243–250. https://doi.org/10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  21. Wang P, Menzies NW, Lombi E, Mc Kenna BA, Johannessen B, Glover CJ (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 42(23):13822–13830. https://doi.org/10.1021/es403466p

    Article  CAS  Google Scholar 

  22. Ruangthep P, Samart S, Chutipaijit S (2018) ZnO nanoparticles affect differently the morphological and physiological responses of Riceberry plants (Oryza sativa L.). SNRU J Sci Technol 10(1):75–81

    Google Scholar 

  23. Lee CW, Mahendra S, Zodrow K, Tsai D, Braam PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675. https://doi.org/10.1002/etc.58

    Article  CAS  Google Scholar 

  24. Lee S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnONPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20(2):848–854. https://doi.org/10.1007/s11356-012-1069-8

    Article  CAS  Google Scholar 

  25. Thwala Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctata and the role of testing media parameters. Environ Sci Proc Impacts 15:1830–1843. https://doi.org/10.1039/c3em00235g

    Article  CAS  Google Scholar 

  26. Kouhi SMM, Lahouti M, Ganjeali A, Entezar MH (2014) Comparative microparticles, and Zn2+on rapeseed (Brassica napus L.): investigating a wide range of concentrations. Toxicol Environ Chem 96:861–868. https://doi.org/10.1080/02772248.2014.994517

    Article  CAS  Google Scholar 

  27. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, Jose-Yacaman M, Peralta-Videa JR, Gardea- Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 15:515–516. https://doi.org/10.1016/j.scitotenv.2015.02.014

    Article  CAS  Google Scholar 

  28. Wang XP, Jiang P, Ma Y, Geng SJ, Wang SC, Shi DC (2015) Physiological strategies of sunflower exposed to salt or alkali stresses: restriction of ion transport in the cotyledon node zone and solute accumulation. Agron J 107:2181–2192. https://doi.org/10.2134/agronj15.0012

    Article  CAS  Google Scholar 

  29. Bagawade JA, Jagtap SS (2018) Effect of zinc oxide nanoparticles on germination and growth characteristics in wheat plants (Triticum aestivum L.). Int J Adv Eng Res Dev 13(1):315–323

    Google Scholar 

  30. Yoshihara S, Yamamoto K, Nakajima Y, Takeda S, Kurahashi K, Tokumoto H (2019) Absorption of zinc ions dissolved from zinc oxide nanoparticles in the tobacco callus improves plant productivity. Plant Cell, Tissue Organ Cult 138(2):1–9. https://doi.org/10.1007/s11240-019-01636-0

    Article  Google Scholar 

  31. Hira Zafar, Joham Sarfaraz Ali, Attarad Ali (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Frontier in Plant Science 7(376). https://doi.org/10.3389/fpls.2016.00535

  32. Iziy E, Majd A, Vaezi-Kakhki MR, Nejadsattari T, Noureini SK (2019) Effects of zinc oxide nanoparticles on enzymatic and nonenzymatic antioxidant content, germination, and biochemical and ultrastructural cell characteristics of Portulaca oleracea L. Acta Soc Bot Pol 88(4):36–39. https://doi.org/10.5586/asbp.3639

    Article  CAS  Google Scholar 

  33. Elshoky HA, Yotsova E, Farghali MA, Farroh KY (2021) Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. Plant Physiol Biochem 167(10):607–618. https://doi.org/10.1016/j.plaphy.2021.08.039

    Article  CAS  Google Scholar 

  34. Venkatachalam P, Mani J, Manikandan R, Geetha N (2016) Zinc oxide nanoparticles (ZnO NPs) alleviated heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69. https://doi.org/10.1016/j.plaphy.2016.08.022

    Article  CAS  Google Scholar 

  35. Samart S, Phakamas N, Chutipaijit S (2014) Evaluating the effect of zinc oxide nanoparticles on the physiological responses of Thai rice (Oryza sativa L.). The 3rd Joint Conference on Renewable Energy and Nanotechnology. Mahidol University. Kanchanaburi Campus. Thailand. 2223 December 14

  36. Han QH, Huang B, Ding CB (2017) Effect of melatonin and antioxidative system and photosystem П in cold-stressed Rice seedling. Front Plant Sci 8:785. https://doi.org/10.3389/fpls.2017.00785

    Article  Google Scholar 

  37. Adhikari T, Kundu S, Rao AS (2016) Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutriton 39:136–146. https://doi.org/10.1080/01904167.2015.1087562

    Article  CAS  Google Scholar 

  38. García-Lopez JI, Zavala-García F, Olivares-Saenz E, Lira-Saldívar R, Barriga-Castro ED, Ruiz-Torres NA, Ramos-Cortez E, Vazquez-Alvarado R, Nino-Medina G (2018) Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy 82(10):215. https://doi.org/10.3390/agronomy8100215

    Article  CAS  Google Scholar 

  39. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 1(115):677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

    Article  CAS  Google Scholar 

  40. Singh MV (2009) Micronutrient nutritional problems in soils of India and improvement for human and animal’s health. Indian J Fertil 5(4):11–26

    CAS  Google Scholar 

  41. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Plant Soil 302(1):1–17. https://doi.org/10.1007/s11104-007-9466-3

    Article  CAS  Google Scholar 

  42. Kenneth JL, Thomas DS (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. National library of medicine 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  43. Pandey N, Pathak GC, Sharma CP (2006) Zinc is critically required for pollen function and fertilization in lentil. J Trace Elem Med Biol 20(2):89–96. https://doi.org/10.1016/j.jtemb.2005.09.006

    Article  CAS  Google Scholar 

  44. Sun L, Song F, Zhu X, Liu S, Liu F, Wang Y, Li X (2020) Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Archiv Agron Soil Sci 67:245–259. https://doi.org/10.1080/03650340.2020.1723003

    Article  CAS  Google Scholar 

  45. Lichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11(5):591–592. https://doi.org/10.1042/bst0110591

    Article  CAS  Google Scholar 

  46. Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry root stock PHLC (Prunus avium-Prunus cerasus). Plant Physiol Biochem 61:162–168. https://doi.org/10.1016/j.plaphy.2012.10.001

    Article  CAS  Google Scholar 

  47. Sachin B (2017) Inducible expression of magnesium protoporphyrin chelatase subunit I (CHLI)-amiRNA provides insights into cucumber mosaic virus Y satellite RNA-induced chlorosis symptoms. Virus eases 28(1):69–80. https://doi.org/10.1007/s13337-017-0360-1

    Article  Google Scholar 

  48. Yuan XK, Yang ZQ (2018) The effect of endogenous hormones on plant morphology and fruit quality of tomato under difference between day and night temperature. Hort Sci (Prague) 45(3):131–138. https://doi.org/10.17221/7/2017-HORTSCI

    Article  CAS  Google Scholar 

  49. Nair PMG, Chung IM (2017) Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings exposure. Sci Total Environ 575:187–198. https://doi.org/10.1016/j.scitotenv.2016.10.017

    Article  CAS  Google Scholar 

  50. Tognetti VB, Mühlenbock PER, Van Breusegem F (2012) Stress homeostasis-the redox and auxin perspective. Plant, Cell Environ 35:321–333. https://doi.org/10.1111/j.13653040.2011.02324.x

    Article  CAS  Google Scholar 

  51. Vishal B, Kumar PP (2018) Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Frontirs in Plant Science 9:838. https://doi.org/10.3389/fpls.2018.00838

    Article  Google Scholar 

  52. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

    Article  CAS  Google Scholar 

  53. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea Torresde JL (2014) Physiological effect of nanoparticles ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138. https://doi.org/10.1039/c3mt00064h

    Article  CAS  Google Scholar 

  54. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  Google Scholar 

  55. Darlington TK, Neigh AM, Spencer MT (2009) Nanoparticle characteristic affecting environmental fate and transport through soil. Environ Toxicol 28:1191–1199. https://doi.org/10.1897/08-341.1

    Article  CAS  Google Scholar 

  56. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828. https://doi.org/10.1039/c0em00611d

    Article  CAS  Google Scholar 

  57. El-Kereti M, El-feky S, Khater M, Osman Y, El-sherbini E (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Patent Food Nutr Agric 5:169–181. https://doi.org/10.2174/2212798405666131112142517

    Article  CAS  Google Scholar 

  58. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2(1):4857. https://doi.org/10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  59. Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity and zinc biofortification in maize (Zea mays L.). J Agr Food Chem 64:3778–3788. https://doi.org/10.1021/acs.jafc.6b00838

    Article  CAS  Google Scholar 

  60. Mazaheri Tirani M, Madadkar M (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticle and bulk exposure morphological, physiological and anatomical adjustment. Funct Plant Biol 46(4):360–375. https://doi.org/10.1071/FP18076

    Article  CAS  Google Scholar 

  61. Mousavi Kouhi SM, Lahouti M, Gangeali A, Entezari M (2015) Long term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural response. Environ Sci Pollut Res 11. https://doi.org/10.1007/s11356-015-4306-0

  62. Akhavan Hezaveh T, Pourakbar L, Rahmani F, Alipour H (2020) Effect of ZnO NPs on phenolic compound of rapeseed under salinity stress. J Plant Process Funct 8(34):11–18

    Google Scholar 

  63. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 9618–9198. https://doi.org/10.1016/j.plaphy.2015.07.026

  64. Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157. https://doi.org/10.1016/j.ecoenv.2012.11.025

    Article  CAS  Google Scholar 

  65. Martinez JP, Silva H, Ledent F, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Agron 26(1):30–38. https://doi.org/10.1016/j.eja.2006.08.003

    Article  Google Scholar 

  66. S Narendhran, P Rajiv, Rajeshwari Sivaraj (2016) Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc deficient soil. Int J Pharm Pharm Sci 8:365–381. ISSN:0975–1491

  67. Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:353364. https://doi.org/10.1166/jnan.2013.1156

    Article  CAS  Google Scholar 

  68. García-Sanchez S, Bernales I, Cristobal S (2015) Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics 16:341. https://doi.org/10.1186/s12864-015-1530-4

    Article  CAS  Google Scholar 

  69. Connell SL, Al-Hamdani SH (2001) Selected physiological responses of kudzu to different chromium concentrations. Can J Plant Sci 81:53–58. https://doi.org/10.4141/P00-029

    Article  CAS  Google Scholar 

  70. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2:105–114. https://doi.org/10.1016/j.jece.2013.11.029

    Article  CAS  Google Scholar 

  71. Demidchik V (2015) Mechanism of oxidative stress in plants: from chemical chemistry to cell biology. Environ Exp Bot 109:212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021

    Article  CAS  Google Scholar 

  72. Devlin MR, Withman FH (2002) Plant physiology. CBs publishers and distributers. Chapter 12. Fire lettuce. Physiol Planetarium 103:1–7

    Google Scholar 

  73. Xp Wang X, Yang SC, Li Q, Wang W, Hou C, Gao X, Wang Li, Wang S (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243. https://doi.org/10.3389/fpls.2015.01243

    Article  Google Scholar 

  74. Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927. https://doi.org/10.1080/01904167.2012.663443

    Article  CAS  Google Scholar 

  75. Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2015) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants-a soil microcosm experiment. Chemosphere 147:88–97. https://doi.org/10.1016/j.chemosphere.2015.12.076

    Article  CAS  Google Scholar 

  76. Boykov IN, Shuford E, Zhang H (2019) Nanoparticle titanium dioxide affects the growth and microRNA expression of switchgrass (Panicum virgatum). Genomics 111:450–456. https://doi.org/10.1016/j.ygeno.2018.03.002

    Article  CAS  Google Scholar 

  77. Petrova A, Plaksenkova I, Kokina I, JermalOnoka M (2021) Effect of Fe3O4 and CuO nanoparticles on morphology, genotoxicity, and miRNA expression on different barley (Hordeum vulgare L.) genotypes. Sci World J 2021:1–11. https://doi.org/10.1155/2021/6644689

    Article  CAS  Google Scholar 

  78. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761. https://doi.org/10.1093/jxb/erv013

    Article  CAS  Google Scholar 

  79. Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307. https://doi.org/10.1038/nchembio.165

    Article  CAS  Google Scholar 

  80. Ahammed G, Xia X, Li X, Shi K, Yu J, Zhou Y (2014) Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Curr Protein Pept Sci 16:462–473. https://doi.org/10.2174/1389203716666150330141427

    Article  CAS  Google Scholar 

  81. Hafeeze B, Khanife YM, Saleem M (2013) Role of zinc in plant nutrition-a review. Am J Exp Agric 3(2):374–391

    Google Scholar 

  82. Upreti KK, Sharma M (2016) Role of plant growth regulators in abiotic stress tolerance. Abiotic Stress Physiol Hort Crops 150:414–418. https://doi.org/10.1007/978-81-322-2725-0-2

    Article  Google Scholar 

  83. Shu K, Zhou W, Chen F, Luo X, Yang W (2018) Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Fron Plant Sci 9:1–8. https://doi.org/10.3389/fpls.2018.00416

    Article  Google Scholar 

  84. Vankova R, Landa P, Podlipna R, Petre I, Prerostova S, Langhansova L, Gaudinova A, Motkova K, Knirsch V, Vanek T (2017) ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Science of the Total Environment 535-542. https://doi.org/10.1016/j.scitotenv.2017.03.160

  85. Farrag HF (2015) Evaluation of the growth responses of Lemna gibba L. (Duckweed) to silver and zinc oxide nanoparticles. World Appl Sci J 33(2):190- exposed 202. https://doi.org/10.5829/idosi.wasj.2015.33.02.83

  86. Amin MA, Badawy AA (2017) Metabolic changes in common bean plants in response to zinc nanoparticles and zinc sulfate. IJISET-Int J Innov Sci, Eng Technol 4(5)

  87. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64. https://doi.org/10.1016/j.plaphy.2014.07.010

    Article  CAS  Google Scholar 

  88. Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391. https://doi.org/10.1038/nrm1364

    Article  CAS  Google Scholar 

  89. Dayan J, Voronin N, Gong F, Sun T-p, Hedden P, Fromm H, Aloni R (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24(1):66–79. https://doi.org/10.1105/tpc.111.093096

    Article  CAS  Google Scholar 

  90. Kleckerova A, Sobrova P, Krystofova O, Sochor J, Zitka O, Babula P, Adam V, Docekalova H, Kizek R (2011) Cadmium (II) and zinc (II) ions effects on maize plants revealed by spectroscopy and electrochemistry. Int J Electrochem Sci 6:6011–6031

    CAS  Google Scholar 

  91. Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus x canescens exposed to excess zinc. Plant Cell Environ 38:207–223. https://doi.org/10.1111/pce.12434

    Article  CAS  Google Scholar 

  92. Chaca P, Vigliocco A, Reinoso H, Molina A, Abdala G, Zirulnik F, Pedranzani H (2014) Effects of cadmium stress on growth, anatomy and hormone contents in Glycine max (L.). Merr Acta Physiol Plant 36:2815–2826. https://doi.org/10.1007/s11738-014-1656-z

    Article  CAS  Google Scholar 

  93. Yang J, Cao W, Rui Y (2017) Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12(1):158–169. https://doi.org/10.1080/17429145.2017.1310944

    Article  CAS  Google Scholar 

  94. Chen BJW, Hajiboland R, Bahrami-Rad S, Moradtalab N, Anten NPR (2019) Presence of below ground neighbors activates defense pathways at the expense of growth in tobacco plants. Front Plant Sci 10:751. https://doi.org/10.3389/fpls.2019.00751

    Article  Google Scholar 

  95. Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A (2010) ABA promotes quiescence of the quiescent center and suppressed stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64:764–774. https://doi.org/10.1111/j.1365-313x.2010.04367.x

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the University of Tabriz for financial support of this project under Grant no. 52/418454/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanieh Mohajjel Shoja.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardi, A., Mohajjel Shoja, H. & Mohajel Kazemi, E. Comparative study of growth responses, photosynthetic pigment content, and gene expression pattern in tobacco plants treated with ZnO nano and ZnO bulk particles. J Nanopart Res 24, 208 (2022). https://doi.org/10.1007/s11051-022-05583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05583-4

Keywords

Navigation