Skip to main content
Log in

Hierarchical phase separation in all small-molecule organic solar cells

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Solution processable small-molecule organic solar cells have progressed a lot in terms of donor and acceptor materials, device architectures, fabrication techniques, and optimization methodologies which have enabled credible performance gains. The hierarchical active layer morphology is one such strategy that has led to significant performance gains by overcoming the earlier systems’ shortcomings and providing an optimized active layer morphology with features well within the confines of the excitonic diffusion length (LD) (5–30 nm). Multi-length scale domains, lateral and vertical phase separation, and interconnected network-like charge transport pathways are some of the key morphological features that lead to enhanced open-circuit voltage, short circuit current, fill factor, and in turn, greater power conversion efficiencies. This has furthered our understanding of the relationship between morphology and the charge generation, transport, disassociation, and extraction processes. In this review, we summarize the efforts concentrated on achieving such optimized hierarchical morphologies in binary and ternary small molecule-based organic solar cells and provide insights into the relationship between performance and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from ref. [127] Copyright © 2016, Nature Communications

Fig. 5

Reproduced with permission from ref. [128] Copyright © 2019, Nature Communications

Fig. 6

Reproduced with permission from ref. [129] Copyright © 2020, Wiley‐VCH GmbH

Fig. 7

Reproduced with permission from ref. [130] Copyright © 2021, Wiley‐VCH GmbH

Fig. 8

Reproduced with permission from ref. [131] Copyright © 2016, Royal Society of Chemistry

Fig. 9

Reproduced with permission from ref. [132] Copyright © 2020, American Chemical Society

Fig. 10

Reproduced with permission from ref. [133] Copyright © 2018, Nature Energy

Fig. 11

Reproduced with permission from ref. [134] Copyright © 2008, Royal Society of Chemistry

Fig. 12

Reproduced with permission from ref. [135] Copyright © 2021, Wiley‐VCH GmbH

Similar content being viewed by others

References

  1. Kaltenbrunner M et al (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3(1):1–7

    Google Scholar 

  2. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153–161

    CAS  Google Scholar 

  3. Chen Y, Wan X, Long G (2013) High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res 46(11):2645–2655

    CAS  Google Scholar 

  4. Collins SD et al (2017) Small is powerful: recent progress in solution-processed small molecule solar cells. Adv Energy Mater 7(10):1602242

    Google Scholar 

  5. Traverse CJ et al (2017) Emergence of highly transparent photovoltaics for distributed applications. Nat Energy 2(11):849–860

    Google Scholar 

  6. Inganäs O (2018) Organic photovoltaics over three decades. Adv Mater 30(35):1800388

    Google Scholar 

  7. Zhan X, Zhu D (2010) Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem 1(4):409–419

    CAS  Google Scholar 

  8. Zhao J et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1(2):1–7

    Google Scholar 

  9. Fan H, Zhu X (2015) Development of small-molecule materials for high-performance organic solar cells. SCIENCE CHINA Chem 58(6):922–936

    CAS  Google Scholar 

  10. Wan X et al (2020) Acceptor–donor–acceptor type molecules for high performance organic photovoltaics–chemistry and mechanism. Chem Soc Rev 49(9):2828–2842

    CAS  Google Scholar 

  11. Zhan L et al (2020) Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ Sci 13(2):635–645

    CAS  Google Scholar 

  12. An Q et al (2020) Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ Sci 13(12):5039–5047

    CAS  Google Scholar 

  13. Liu Q et al (2020) 18% Efficiency organic solar cells. Science Bulletin 65(4):272–275

    CAS  Google Scholar 

  14. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338

    CAS  Google Scholar 

  15. Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 73(9):096401

    Google Scholar 

  16. Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470

    CAS  Google Scholar 

  17. Brabec CJ et al (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22(34):3839–3856

    CAS  Google Scholar 

  18. Mihailetchi V et al (2004) Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett 93(21):216601

    CAS  Google Scholar 

  19. Hoppe H, Sariciftci NS (2006) Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem 16(1):45–61

    CAS  Google Scholar 

  20. Blom PW et al (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19(12):1551–1566

    CAS  Google Scholar 

  21. Persson N-K, Wang X, Inganäs O (2007) Optical limitations in thin-film low-band-gap polymer/fullerene bulk heterojunction devices. Appl Phys Lett 91(8):083503

    Google Scholar 

  22. Pivrikas A et al (2007) A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovoltaics Res Appl 15(8):677–696

    CAS  Google Scholar 

  23. Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26(1):10–28

    CAS  Google Scholar 

  24. Cheng P, Zhan X (2015) Versatile third components for efficient and stable organic solar cells. Mater Horiz 2(5):462–485

    CAS  Google Scholar 

  25. An Q et al (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9(2):281–322

    Google Scholar 

  26. Xie Y et al (2018) Morphology control enables efficient ternary organic solar cells. Adv Mater 30(38):1803045

    Google Scholar 

  27. Xie Y et al (2018) High-performance semitransparent ternary organic solar cells. Adv Func Mater 28(49):1800627

    Google Scholar 

  28. Bi P, Hao X (2019) Versatile ternary approach for novel organic solar cells: a review. Solar RRL 3(1):1800263

    Google Scholar 

  29. Gasparini N et al (2019) The role of the third component in ternary organic solar cells. Nat Rev Mater 4(4):229–242

    Google Scholar 

  30. Zhao C et al (2021) Recent advances, challenges and prospects in ternary organic solar cells. Nanoscale 13(4):2181–2208

    CAS  Google Scholar 

  31. Abdulrazzaq OA et al (2013) Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part Sci Technol 31(5):427–442

    CAS  Google Scholar 

  32. Sun H, Guo X, Facchetti A (2020) High-performance n-type polymer semiconductors: applications, recent development, and challenges. Chem 6(6):1310–1326

    CAS  Google Scholar 

  33. Zhang Z et al (2022) Recent progress in small-molecule donors for non-fullerene all-small-molecule organic solar cells. Nano Select 3(2):233–247

    CAS  Google Scholar 

  34. Li H et al (2019) The progress of non-fullerene small molecular acceptors for high efficiency polymer solar cells. Sol Energy Mater Sol Cells 190:83–97

    CAS  Google Scholar 

  35. Kan B et al (2021) Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors. InfoMat 3(2):175–200

    CAS  Google Scholar 

  36. Zhang ZG, Li Y (2021) Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew Chem Int Ed 60(9):4422–4433

    CAS  Google Scholar 

  37. Kwon OK et al (2015) An all-small-molecule organic solar cell with high efficiency nonfullerene acceptor. Adv Mater 27(11):1951–1956

    CAS  Google Scholar 

  38. Feng G et al (2016) All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. J Mater Chem A 4(16):6056–6063

    CAS  Google Scholar 

  39. Guo J et al (2018) All-small molecule solar cells based on donor molecule optimization with highly enhanced efficiency and stability. J Mater Chem A 6(32):15675–15683

    CAS  Google Scholar 

  40. Chen H et al (2019) All-small-molecule organic solar cells with an ordered liquid crystalline donor. Joule 3(12):3034–3047

    CAS  Google Scholar 

  41. Zhang J et al (2018) Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy 3(9):720–731

    CAS  Google Scholar 

  42. Huo Y, Zhang H-L, Zhan X (2019) Nonfullerene all-small-molecule organic solar cells. ACS Energy Lett 4(6):1241–1250

    CAS  Google Scholar 

  43. Ye W et al (2020) Nonfullerene all-small-molecule organic solar cells: prospect and limitation. Solar Rrl 4(11):2000258

    CAS  Google Scholar 

  44. Müller-Buschbaum P (2014) The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater 26(46):7692–7709

    Google Scholar 

  45. Zhou N et al (2014) Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv Energy Mater 4(3):1300785

    Google Scholar 

  46. Ye L et al (2017) High-efficiency nonfullerene organic solar cells: critical factors that affect complex multi-length scale morphology and device performance. Adv Energy Mater 7(7):1602000

    Google Scholar 

  47. Zhao F, Wang C, Zhan X (2018) Morphology control in organic solar cells. Adv Energy Mater 8(28):1703147

    Google Scholar 

  48. Fang L et al (2013) Side-chain engineering of isoindigo-containing conjugated polymers using polystyrene for high-performance bulk heterojunction solar cells. Chem Mater 25(24):4874–4880

    CAS  Google Scholar 

  49. He Z et al (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics 9(3):174–179

    CAS  Google Scholar 

  50. Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9(2):391–410

    CAS  Google Scholar 

  51. Thompson BC, Fréchet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77

    CAS  Google Scholar 

  52. Guo X et al (2013) Polymer solar cells with enhanced fill factors. Nat Photonics 7(10):825–833

    CAS  Google Scholar 

  53. Collins BA et al (2013) Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7: PC71BM solar cells. Adv Energy Mater 3(1):65–74

    Google Scholar 

  54. Barrau S et al (2009) Nanomorphology of bulk heterojunction organic solar cells in 2D and 3D correlated to photovoltaic performance. Macromolecules 42(13):4646–4650

    CAS  Google Scholar 

  55. Bisquert J, Garcia-Belmonte G (2011) On voltage, photovoltage, and photocurrent in bulk heterojunction organic solar cells. J Phys Chem Lett 2(15):1950–1964

    CAS  Google Scholar 

  56. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940

    CAS  Google Scholar 

  57. Lu L et al (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731

    CAS  Google Scholar 

  58. Nam YM, Huh J, Jo WH (2010) Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 94(6):1118–1124

    CAS  Google Scholar 

  59. Brabec CJ et al (2011) Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev 40(3):1185–1199

    CAS  Google Scholar 

  60. Huang Y et al (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114(14):7006–7043

    CAS  Google Scholar 

  61. Xia T et al (2019) Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. SCIENCE CHINA Chem 62(6):662–668

    CAS  Google Scholar 

  62. Brabec CJ et al (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340(3–4):232–236

    CAS  Google Scholar 

  63. Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J Appl Phys 90(7):3632–3641

    Google Scholar 

  64. Gregg BA (2005) The photoconversion mechanism of excitonic solar cells. MRS Bull 30(1):20–22

    CAS  Google Scholar 

  65. Haugeneder A et al (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59(23):15346

    CAS  Google Scholar 

  66. Vogel M et al (2006) Influence of nanoscale morphology in small molecule organic solar cells. Thin Solid Films 511:367–370

    Google Scholar 

  67. Chen C-W et al (2014) Morphology, molecular stacking, dynamics and device performance correlations of vacuum-deposited small-molecule organic solar cells. Phys Chem Chem Phys 16(19):8852–8864

    CAS  Google Scholar 

  68. Min J et al (2015) Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. J Mater Chem A 3(45):22695–22707

    CAS  Google Scholar 

  69. Long G et al (2016) New insights into the correlation between morphology, excited state dynamics, and device performance of small molecule organic solar cells. Adv Energy Mater 6(22):1600961

    Google Scholar 

  70. Rand BP et al (2007) Solar cells utilizing small molecular weight organic semiconductors. Prog Photovoltaics Res Appl 15(8):659–676

    CAS  Google Scholar 

  71. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41(11):4245–4272

    CAS  Google Scholar 

  72. Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed 51(9):2020–2067

    CAS  Google Scholar 

  73. Theander M et al (2000) Photoluminescence quenching at a p o l y t h i o p h e n e/C 60 heterojunction. Phys Rev B 61(19):12957

    CAS  Google Scholar 

  74. Kim JH et al (2019) The critical impact of material and process compatibility on the active layer morphology and performance of organic ternary solar cells. Adv Energy Mater 9(2):1802293

    Google Scholar 

  75. Luo J, Zhou X-H, Jen AK-Y (2009) Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. J Mater Chem 19(40):7410–7424

    CAS  Google Scholar 

  76. Niladari Raju M et al (2015) Synthesis and ultrafast dynamics of a donor–acceptor–donor molecule having optoelectronic properties. J Phys Chem C 119(16):8563–8575

    CAS  Google Scholar 

  77. Sundar TS, Sen R, Johari P (2016) Rationally designed donor–acceptor scheme based molecules for applications in opto-electronic devices. Phys Chem Chem Phys 18(13):9133–9147

    Google Scholar 

  78. Irfan M et al (2017) Design of donor–acceptor–donor (D–A–D) type small molecule donor materials with efficient photovoltaic parameters. Int J Quantum Chem 117(10):e25363

    Google Scholar 

  79. Zhao J et al (2020) Recent advances in high-performance organic solar cells enabled by acceptor–donor–acceptor–donor–acceptor (A–DA′ D-A) type acceptors. Mater Chem Frontiers 4(12):3487–3504

    CAS  Google Scholar 

  80. Zhou H et al (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew Chem 123(13):3051–3054

    Google Scholar 

  81. Ren Y et al (2014) Isoindigo-containing molecular semiconductors: effect of backbone extension on molecular organization and organic solar cell performance. Chem Mater 26(22):6570–6577

    CAS  Google Scholar 

  82. Gao HH et al (2019) Achieving both enhanced voltage and current through fine-tuning molecular backbone and morphology control in organic solar cells. Adv Energy Mater 9(27):1901024

    Google Scholar 

  83. Wang X et al (2021) Backbone engineering with asymmetric core to finely tune phase separation for high-performance all-small-molecule organic solar cells. ACS Appl Mater Interfaces 13(9):11108–11116

    CAS  Google Scholar 

  84. Jin R, Chang Y (2015) A theoretical study on photophysical properties of triphenylamine-cored molecules with naphthalimide arms and different π-conjugated bridges as organic solar cell materials. Phys Chem Chem Phys 17(3):2094–2103

    CAS  Google Scholar 

  85. Ye C et al (2018) High-performance organic solar cells based on a small molecule with thieno [3, 2-b] thiophene as π-bridge. Org Electron 53:273–279

    CAS  Google Scholar 

  86. Chen Y et al (2019) Changing the π-bridge from thiophene to thieno [3, 2-b] thiophene for the D–π–A type polymer enables high performance fullerene-free organic solar cells. Chem Commun 55(47):6708–6710

    CAS  Google Scholar 

  87. Fan B et al (2020) Tailoring regioisomeric structures of π-conjugated polymers containing monofluorinated π-bridges for highly efficient polymer solar cells. ACS Energy Lett 5(6):2087–2094

    CAS  Google Scholar 

  88. Chuang S-Y et al (2009) Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells. J Mater Chem 19(31):5554–5560

    CAS  Google Scholar 

  89. Chiu M-Y et al (2010) Morphologies of self-organizing regioregular conjugated polymer/fullerene aggregates in thin film solar cells. Macromolecules 43(1):428–432

    CAS  Google Scholar 

  90. Kim Y et al (2011) A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific, pp 63–69

    Google Scholar 

  91. Steyrleuthner R et al (2014) The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. J Am Chem Soc 136(11):4245–4256

    CAS  Google Scholar 

  92. Chandrasekaran N et al (2017) Effect of regioregularity on recombination dynamics in inverted bulk heterojunction organic solar cells. J Phys D Appl Phys 51(1):015501

    Google Scholar 

  93. Seo S et al (2022) Importance of High-Electron Mobility in Polymer Acceptors for Efficient All-Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity. Adv Func Mater 32(5):2108508

    CAS  Google Scholar 

  94. Li W et al (2014) Controlling Molecular Weight of a High Efficiency Donor-Acceptor Conjugated Polymer and Understanding Its Significant Impact on Photovoltaic Properties. Adv Mater 26(26):4456–4462

    CAS  Google Scholar 

  95. Gibson GL et al (2014) Molecular weight and end capping effects on the optoelectronic properties of structurally related ‘heavy atom’donor–acceptor polymers. Journal of Materials Chemistry A 2(35):14468–14480

    CAS  Google Scholar 

  96. Xiao Z et al (2015) Effect of molecular weight on the properties and organic solar cell device performance of a donor–acceptor conjugated polymer. Polym Chem 6(12):2312–2318

    CAS  Google Scholar 

  97. Li Z et al (2019) Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 64:103931

    CAS  Google Scholar 

  98. Cho C-H et al (2011) Controlling side-chain density of electron donating polymers for improving their packing structure and photovoltaic performance. Chem Commun 47(12):3577–3579

    CAS  Google Scholar 

  99. Jung M et al (2014) Nanoscopic management of molecular packing and orientation of small molecules by a combination of linear and branched alkyl side chains. ACS Nano 8(6):5988–6003

    CAS  Google Scholar 

  100. Yan C et al (2017) Enhancing performance of non-fullerene organic solar cells via side chain engineering of fused-ring electron acceptors. Dyes Pigm 139:627–634

    CAS  Google Scholar 

  101. Huo L et al (2018) Subtle side-chain engineering of random terpolymers for high-performance organic solar cells. Chem Mater 30(10):3294–3300

    CAS  Google Scholar 

  102. Kouijzer S et al (2013) Predicting morphologies of solution processed polymer: fullerene blends. J Am Chem Soc 135(32):12057–12067

    CAS  Google Scholar 

  103. Liu F et al (2014) Molecular weight dependence of the morphology in P3HT: PCBM solar cells. ACS Appl Mater Interfaces 6(22):19876–19887

    CAS  Google Scholar 

  104. Ye L et al (2018) Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat Mater 17(3):253–260

    CAS  Google Scholar 

  105. Ye L et al (2018) Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation. Adv Energy Mater 8(28):1703058

    Google Scholar 

  106. Yang L, Yan L, You W (2013) Organic solar cells beyond one pair of donor–acceptor: ternary blends and more. J Phys Chem lett 4(11):1802–1810

    CAS  Google Scholar 

  107. Lu L et al (2015) Status and prospects for ternary organic photovoltaics. Nat Photonics 9(8):491–500

    CAS  Google Scholar 

  108. Ameri T et al (2013) Organic ternary solar cells: a review. Adv Mater 25(31):4245–4266

    CAS  Google Scholar 

  109. Adil MA et al (2021) Unconventional third components for ternary organic solar cells. Mater Today Energy 21:100728

    CAS  Google Scholar 

  110. Graham KR et al (2012) Improved Performance of Molecular Bulk-Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives. Adv Func Mater 22(22):4801–4813

    CAS  Google Scholar 

  111. Liao H-C et al (2013) Additives for morphology control in high-efficiency organic solar cells. Mater Today 16(9):326–336

    CAS  Google Scholar 

  112. Vongsaysy U et al (2014) Guiding the selection of processing additives for increasing the efficiency of bulk heterojunction polymeric solar cells. Adv Energy Mater 4(3):1300752

    Google Scholar 

  113. Machui F et al (2015) Classification of additives for organic photovoltaic devices. ChemPhysChem 16(6):1275–1280

    CAS  Google Scholar 

  114. Yi Z et al (2014) Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J Mater Chem C 2(35):7247–7255

    CAS  Google Scholar 

  115. Wan X et al (2013) Improved efficiency of solution processed small molecules organic solar cells using thermal annealing. Org Electron 14(6):1562–1569

    CAS  Google Scholar 

  116. Min J et al (2017) Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. J Mater Chem A 5(34):18101–18110

    CAS  Google Scholar 

  117. Zhang Z et al (2020) The post-treatment effects on open circuit voltages and device performances in a high efficiency all-small-molecule organic solar cell. J Mater Chem C 8(43):15385–15392

    CAS  Google Scholar 

  118. Chen H et al (2013) Precise structural development and its correlation to function in conjugated polymer: fullerene thin films by controlled solvent annealing. Adv Func Mater 23(13):1701–1710

    CAS  Google Scholar 

  119. Hu S et al (2014) The impact of selective solvents on the evolution of structure and function in solvent annealed organic photovoltaics. RSC Adv 4(53):27931–27938

    CAS  Google Scholar 

  120. Zheng Y et al (2014) Effects of different polar solvents for solvent vapor annealing treatment on the performance of polymer solar cells. Org Electron 15(11):2647–2653

    CAS  Google Scholar 

  121. Wang D et al (2014) Tuning nanoscale morphology using mixed solvents and solvent vapor treatment for high performance polymer solar cells. RSC Adv 4(89):48724–48733

    CAS  Google Scholar 

  122. Zomerman D et al (2018) Control and characterization of organic solar cell morphology through variable-pressure solvent vapor annealing. ACS Appl Energy Mater 1(10):5663–5674

    CAS  Google Scholar 

  123. Cui C, Li Y (2021) Morphology optimization of photoactive layers in organic solar cells. Aggregate 2(2):e31

    Google Scholar 

  124. Liu Y et al (2021) In situ optical studies on morphology formation in organic photovoltaic blends. Small Methods 5(10):2100585

    CAS  Google Scholar 

  125. Wienhold KS et al (2020) Following in situ the evolution of morphology and optical properties during printing of thin films for application in non-fullerene acceptor based organic solar cells. ACS Appl Mater Interfaces 12(36):40381–40392

    CAS  Google Scholar 

  126. Mahmood A, Wang JL (2020) A review of grazing incidence small-and wide-angle x-ray scattering techniques for exploring the film morphology of organic solar cells. Solar RRL 4(10):2000337

    CAS  Google Scholar 

  127. Deng D et al (2016) Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat Commun 7(1):1–9

    Google Scholar 

  128. Zhou R et al (2019) All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nat Commun 10(1):1–9

    Google Scholar 

  129. Zhou R et al (2020) Moving alkyl-chain branching point induced a hierarchical morphology for efficient all-small-molecule organic solar cells. Adv Func Mater 30(51):2005426

    CAS  Google Scholar 

  130. Zhang L et al (2022) High miscibility compatible with ordered molecular packing enables an excellent efficiency of 162% in all-small-molecule organic solar cells. Adv Mater 34(5):2106316

    CAS  Google Scholar 

  131. Angunawela I et al (2019) Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. Mater Chem Frontiers 3(1):137–144

    CAS  Google Scholar 

  132. Wu Q et al (2020) Modulation of donor alkyl terminal chains with the shifting branching point leads to the optimized morphology and efficient all-small-molecule organic solar cells. ACS Appl Mater Interfaces 12(22):25100–25107

    CAS  Google Scholar 

  133. Zhou Z et al (2018) High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat Energy 3(11):952–959

    CAS  Google Scholar 

  134. Qin J et al (2021) 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci 14(11):5903–5910

    CAS  Google Scholar 

  135. Zhang Z et al (2022) Polymerized small-molecule acceptor as an interface modulator to increase the performance of all-small-molecule solar cells. Adv Energy Mater 12(3):2102394

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 22135001, 21721002 and 52073068) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqi Zhang or Zhixiang Wei.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Self-assembled Functional Nanomaterials and Devices in Asia

Guest editors: Zhixiang We and Yong Yan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.J., Zhang, J. & Wei, Z. Hierarchical phase separation in all small-molecule organic solar cells. J Nanopart Res 24, 225 (2022). https://doi.org/10.1007/s11051-022-05568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05568-3

Keywords

Navigation