Skip to main content

Advertisement

Log in

Nanotechnology-based approaches in diagnosis and treatment of epilepsy

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Over 70 million people worldwide are suffering from different forms of epilepsy. Despite significant advances in the past few decades, between 20 and 40% of these patients would develop medically intractable epilepsy. Technological advances are essential in the identification of novel reliable diagnostic and therapeutic approaches and in improving the quality of health services for patients with epilepsy. Nanotechnology-based approaches offer potential effective methods to improve seizure detection and treatment. Nanomedicine-based nanoparticles can promote anti-convulsant therapy through improving pharmacokinetics and biodistribution of drugs as well as providing more efficient drugs and active molecule delivery systems. Furthermore, nanotechnology-based approaches can tackle barriers to a better diagnosis of epilepsy via the improvement of bioelectrical recording approaches as well as the development of novel biomarkers and imaging systems. In the present review, we summarized the current nanotechnology-based advances in the diagnosis and treatment of epilepsy and discussed how the knowledge of these achievements could convey a better treatment outcome in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Acharya UR, Hagiwara Y, Deshpande SN, Suren S, Koh JEW, Oh SL, Arunkumar N, Ciaccio EJ, Lim CM (2019) Characterization of focal EEG signals: a review. Futur Gener Comput Syst 91:290–299

    Article  Google Scholar 

  2. Owolabi LF, Owolabi SD, Taura AA, Alhaji ID, Ogunniyi A (2019) Prevalence and burden of epilepsy in Nigeria: a systematic review and meta-analysis of community-based door-to-door surveys. Epilepsy Behav 92:226–234

    Article  Google Scholar 

  3. Fernández IS, Loddenkemper T, Gaínza-Lein M, Sheidley BR, Poduri A (2019) Diagnostic yield of genetic tests in epilepsy: a meta-analysis and cost-effectiveness study. Neurology 92(5):e418–e428

    Article  Google Scholar 

  4. Sirven JI (2015) Epilepsy: a spectrum disorder. Cold Spring Harb Perspect Med 5(9):a022848

    Article  Google Scholar 

  5. Vaughan KA, Ramos CL, Buch VP, Mekary RA, Amundson JR, Shah M, Rattani A, Dewan MC, Park KB (2018) An estimation of global volume of surgically treatable epilepsy based on a systematic review and meta-analysis of epilepsy. J Neurosurg 130(4):1127–1141

    Article  Google Scholar 

  6. Kinney M, McCarron M, Craig J (2019) The reliable measurement of temporal trends in mortality attributed to epilepsy and status epilepticus in Northern Ireland between 2001–2015. Seizure 64:16–19

    Article  CAS  Google Scholar 

  7. Engel J Jr (2014) Approaches to refractory epilepsy. Ann Indian Acad Neurol 17(Suppl 1):S12-17. https://doi.org/10.4103/0972-2327.128644

    Article  Google Scholar 

  8. Wang J, Huang P, Song Z (2019) Comparison of the relapse rates in seizure-free patients in whom antiepileptic therapy was discontinued and those in whom the therapy was continued: a meta-analysis. Epilepsy Behav 101:106577

    Article  Google Scholar 

  9. Kvalsund MP, Birbeck GL (2012) Epilepsy care challenges in developing countries. Curr Opin Neurol 25(2):179–186. https://doi.org/10.1097/WCO.0b013e328350baf8

    Article  Google Scholar 

  10. Ventola CL (2012) The nanomedicine revolution: part 2: current and future clinical applications. P T 37(10):582–591

    Google Scholar 

  11. Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, Liu X, McMillan J, Mosley RL, Narasimhan B, Mallapragada SK (2015) Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine 11(3):751–767. https://doi.org/10.1016/j.nano.2014.12.014

    Article  CAS  Google Scholar 

  12. Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian RJ, Zheng M, Shi BY (2020) Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin 41(7):936–953. https://doi.org/10.1038/s41401-020-0429-z

    Article  CAS  Google Scholar 

  13. Han Y, Gao Z, Chen L, Kang L, Huang W, Jin M, Wang Q, Bae YH (2019) Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 9(5):902–922. https://doi.org/10.1016/j.apsb.2019.01.004

    Article  Google Scholar 

  14. Kanwar JR, Sun X, Punj V, Sriramoju B, Mohan RR, Zhou S-F, Chauhan A, Kanwar RK (2012) Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomed: Nanotechnol, Biol Med 8(4):399–414

  15. Singh AV, Khare M, Gade WN, Zamboni P (2012) Theranostic implications of nanotechnology in multiple sclerosis: a future perspective. Autoimmune Dis 2012:160830. https://doi.org/10.1155/2012/160830

    Article  CAS  Google Scholar 

  16. Cano A, Turowski P, Ettcheto M, Duskey JT, Tosi G, Sanchez-Lopez E, Garcia ML, Camins A, Souto EB, Ruiz A, Marquie M, Boada M (2021) Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: from current to future challenges. J Nanobiotechnology 19(1):122. https://doi.org/10.1186/s12951-021-00864-x

    Article  Google Scholar 

  17. Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501. https://doi.org/10.1039/c5cs00798d

    Article  CAS  Google Scholar 

  18. Naczynski DJ, Stafford JH, Türkcan S, Jenkins C, Koh AL, Sun C, Xing L (2018) Rare-Earth-doped nanoparticles for short-wave infrared fluorescence bioimaging and molecular targeting of αVβ3-expressing tumors. Mol Imaging 17:1536012118799131

    Article  Google Scholar 

  19. Posti JP, Takala RS, Runtti H, Newcombe VF, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP, Hossain MI (2016) The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 during the first week after a traumatic brain injury: correlations with clinical and imaging findings. Neurosurgery 79(3):456–464

    Article  Google Scholar 

  20. Bonilla L, Esteruelas G, Ettcheto M, Espina M, García ML, Camins A, Souto EB, Cano A, Sánchez-López E (2021) Biodegradable nanoparticles for the treatment of epilepsy: from current advances to future challenges. Epilepsia Open. https://doi.org/10.1002/epi4.12567

    Article  Google Scholar 

  21. Musumeci T, Bonaccorso A, Puglisi G (2019) Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics 11(3):118. https://doi.org/10.3390/pharmaceutics11030118

    Article  CAS  Google Scholar 

  22. Pottoo FH, Sharma S, Javed MN, Barkat MA, Harshita Alam MS, Naim MJ, Alam O, Ansari MA, Barreto GE, Ashraf GM (2020) Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 52(1):185–204. https://doi.org/10.1080/03602532.2020.1726942

    Article  CAS  Google Scholar 

  23. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986. https://doi.org/10.1021/acs.chemrev.6b00073

    Article  CAS  Google Scholar 

  24. Liu Y, Wang J, Xiong Q, Hornburg D, Tao W, Farokhzad OC (2021) Nano–bio interactions in cancer: from therapeutics delivery to early detection. Acc Chem Res 54(2):291–301. https://doi.org/10.1021/acs.accounts.0c00413

    Article  CAS  Google Scholar 

  25. TF M, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  Google Scholar 

  26. Ngowi EE, Wang Y-Z, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang E-S, Duan S-F, Wei J-S (2021) The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders. Front Bioeng Biotechnol 9:83

    Article  Google Scholar 

  27. Unger WW, Van Beelen AJ, Bruijns SC, Joshi M, Fehres CM, Van Bloois L, Verstege MI, Ambrosini M, Kalay H, Nazmi K (2012) Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. J Control Release 160(1):88–95

    Article  CAS  Google Scholar 

  28. Cheng KK, Chan PS, Fan S, Kwan SM, Yeung KL, Wang Y-XJ, Chow AHL, Wu EX, Baum L (2015) Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44:155–172

    Article  CAS  Google Scholar 

  29. Zeng J, Wu J, Li M, Wang P (2018) A novel magnetic nanoparticle for early detection of amyloid plaques in Alzheimer’s disease. Arch Med Res 49(4):282–285

    Article  CAS  Google Scholar 

  30. Fernández-Cabada T, Ramos-Gómez M (2019) A novel contrast agent based on magnetic nanoparticles for cholesterol detection as Alzheimer’s disease biomarker. Nanoscale Res Lett 14(1):1–6

    Article  Google Scholar 

  31. Cerqueira SR, Ayad NG, Lee JK (2020) Neuroinflammation treatment via targeted delivery of nanoparticles. Front Cell Neurosci 30(14):576037. https://doi.org/10.3389/fncel.2020.576037

    Article  CAS  Google Scholar 

  32. van Kasteren SI, Campbell SJ, Serres S, Anthony DC, Sibson NR, Davis BG (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci 106(1):18–23

    Article  Google Scholar 

  33. Singh GP, Nigam R, Tomar GS, Monisha M, Bhoi SK, Arulselvi S, Sengar K, Akula D, Panta P, Anindya R (2018) Early and rapid detection of UCHL1 in the serum of brain-trauma patients: a novel gold nanoparticle-based method for diagnosing the severity of brain injury. Analyst 143(14):3366–3373

    Article  CAS  Google Scholar 

  34. Jouny CC, Franaszczuk PJ, Bergey GK (2011) Improving early seizure detection. Epilepsy Behav 22(Suppl 1):S44-48. https://doi.org/10.1016/j.yebeh.2011.08.029

    Article  Google Scholar 

  35. Pitkanen A, Ekolle Ndode-Ekane X, Lapinlampi N, Puhakka N (2019) Epilepsy biomarkers — toward etiology and pathology specificity. Neurobiol Dis 123:42–58. https://doi.org/10.1016/j.nbd.2018.05.007

    Article  CAS  Google Scholar 

  36. Speckmann EJEC, Gorji A (2020) Neurophysiological basis of electroencephalogram, in Wyllie’s treatment of epilepsy. Wolters Kluwer, Chapter 6:53–65

    Google Scholar 

  37. Bano S, Yadav SN, Chaudhary V, Garga UC (2011) Neuroimaging in epilepsy. J. Pediatr Neurosci 6(1):19–26. https://doi.org/10.4103/1817-1745.84401

    Article  Google Scholar 

  38. Guo W, Shang DM, Cao JH, Feng K, He YC, Jiang Y, Wang S, Gao YF (2017) Identifying and analyzing novel epilepsy-related genes using random walk with restart algorithm. Biomed Res Int 2017:6132436. https://doi.org/10.1155/2017/6132436

    Article  CAS  Google Scholar 

  39. Ryvlin P, Ciumas C, Wisniewski I, Beniczky S (2018) Wearable devices for sudden unexpected death in epilepsy prevention. Epilepsia 59:61–66

    Article  Google Scholar 

  40. Tiwari S, Sharma V, Mujawar M, Mishra YK, Kaushik A, Ghosal A (2019) Biosensors for epilepsy management: state-of-art and future aspects. Sensors 19(7):1525

    Article  CAS  Google Scholar 

  41. Niedermeyer E, da Silva FL (2005) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins

    Google Scholar 

  42. Gorecka J, Makiewicz P (2019) The dependence of electrode impedance on the number of performed EEG examinations. Sensors (Basel) 19(11). https://doi.org/10.3390/s19112608

  43. Slipher GA, Hairston WD, Bradford JC, Bain ED, Mrozek RA (2018) Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces. PLoS ONE 13(2):e0189415

    Article  Google Scholar 

  44. Li G, Zhang D, Wang S, Duan YY (2016) Novel passive ceramic based semi-dry electrodes for recording electroencephalography signals from the hairy scalp. Sens Actuators, B Chem 237:167–178

    Article  CAS  Google Scholar 

  45. Huang Y-J, Wu C-Y, Wong AM-K, Lin B-S (2014) Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans Biomed Eng 62(1):256–263

    Article  Google Scholar 

  46. Stavrinidis G, Michelakis K, Kontomitrou V, Giannakakis G, Sevrisarianos M, Sevrisarianos G, Chaniotakis N, Alifragis Y, Konstantinidis G (2016) SU-8 microneedles based dry electrodes for electroencephalogram. Microelectron Eng 159:114–120

    Article  CAS  Google Scholar 

  47. Song Y, Li P, Li M, Li H, Li C, Sun D, Yang B (2017) Fabrication of chitosan/Au-TiO2 nanotube-based dry electrodes for electroencephalography recording. Mater Sci Eng, C 79:740–747

    Article  CAS  Google Scholar 

  48. Goulart LA, Guaraldo TT, Lanza MR (2018) A novel electrochemical sensor based on Printex L6 carbon black carrying CuO/Cu2O nanoparticles for propylparaben determination. Electroanalysis 30(12):2967–2976

    Article  CAS  Google Scholar 

  49. Mercado JA, Herrera J, de Jesus PA, Gutierrez J (2016) Embedded EEG recording module with active electrodes for motor imagery brain-computer interface. IEEE Lat Am Trans 14(2):503–510

    Article  Google Scholar 

  50. Fan Y, Han C, Zhang B (2016) Recent advances in the development and application of nanoelectrodes. Analyst 141(19):5474–5487. https://doi.org/10.1039/c6an01285j

    Article  CAS  Google Scholar 

  51. Hanus MJ, HA T (2013) Nanotechnology innovations for the construction industry. Prog Mater Sci 58:1056–1102

    Article  CAS  Google Scholar 

  52. Pavone L, Moyanova S, Mastroiacovo F, Fazi L, Busceti C, Gaglione A, Martinello K, Fucile S, Bucci D, Prioriello A, Nicoletti F, Fornai F, Morales P, Senesi R (2020) Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. J Neural Eng 17(3):036032. https://doi.org/10.1088/1741-2552/ab98db

    Article  Google Scholar 

  53. Miyazawa K (2015) Synthesis of fullerene nanowhiskers using the liquid-liquid interfacial precipitation method and their mechanical, electrical and superconducting properties. Sci Technol Adv Mater 16(1):013502. https://doi.org/10.1088/1468-6996/16/1/013502

    Article  CAS  Google Scholar 

  54. Yu Z, McKnight TE, Ericson MN, Melechko AV, Simpson ML, Morrison B (2007) Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices. Nano Lett 7(8):2188–2195

    Article  CAS  Google Scholar 

  55. Ajetunmobi A, Prina-Mello A, Volkov Y, Corvin A, Tropea D (2014) Nanotechnologies for the study of the central nervous system. Prog Neurobiol 123:18–36

    Article  CAS  Google Scholar 

  56. Li G, Wang S, Li M, Duan YY (2021) Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically “charge-discharge” electrolyte. J Neural Eng. https://doi.org/10.1088/1741-2552/abeeab

    Article  Google Scholar 

  57. Ladani RB, Wu S, Kinloch AJ, Ghorbani K, Zhang J, Mouritz AP, Wang CH (2015) Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibres. Compos Sci Technol 117:146–158

    Article  CAS  Google Scholar 

  58. Lee JH, Lee SM, Byeon HJ, Hong JS, Park KS, Lee S-H (2014) CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording. J Neural Eng 11(4):046014

    Article  Google Scholar 

  59. Kim JH, Hwang J-Y, Hwang HR, Kim HS, Lee JH, Seo J-W, Shin US, Lee S-H (2018) Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci Rep 8(1):1–11

    Google Scholar 

  60. Yang W, Gong Y, Li W (2020) A review: electrode and packaging materials for neurophysiology recording implants. Front Bioeng Biotech 8:1515

    Google Scholar 

  61. Wang G, Kim SK, Wang MC, Zhai T, Munukutla S, Girolami GS, Sempsrott PJ, Nam S, Braun PV, Lyding JW (2020) Enhanced electrical and mechanical properties of chemically cross-linked carbon-nanotube-based fibers and their application in high-performance supercapacitors. ACS Nano 14(1):632–639. https://doi.org/10.1021/acsnano.9b07244

    Article  CAS  Google Scholar 

  62. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588. https://doi.org/10.1016/j.tibtech.2010.07.006

    Article  CAS  Google Scholar 

  63. Li X, Song Y, Xiao G, Xie J, Dai Y, Xing Y, He E, Wang Y, Xu S, Zhang L (2020) Flexible electrocorticography electrode array for epileptiform electrical activity recording under glutamate and GABA modulation on the primary somatosensory cortex of rats. Micromachines 11(8):732

    Article  Google Scholar 

  64. Li Z, Song Y, Xiao G, Gao F, Xu S, Wang M, Zhang Y, Guo F, Liu J, Xia Y (2018) Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats. Anal Biochem 550:123–131

    Article  CAS  Google Scholar 

  65. Lee SM, Kim JH, Park C, Hwang JY, Hong JS, Lee KH, Lee SH (2016) Self-adhesive and capacitive carbon nanotube-based electrode to record electroencephalograph signals from the hairy scalp. IEEE Trans Biomed Eng 63(1):138–147. https://doi.org/10.1109/tbme.2015.2478406

    Article  Google Scholar 

  66. Kim DY, Ku Y, Ahn JW, Kwon C, Kim HC (2018) Electro-deposited nanoporous platinum electrode for EEG monitoring. J Korean Med Sci 33(21):e154

    Article  Google Scholar 

  67. Lin S, Liu J, Li W, Wang D, Huang Y, Jia C, Li Z, Murtaza M, Wang H, Song J (2019) A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett 19(10):6853–6861

    Article  CAS  Google Scholar 

  68. Polat TG, Ateş K, Bilgin S, Duman O, Özen Ş, Tunç S (2019) Carbon nanotube, poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) and Ag nanoparticle doped gelatin based electro-active hydrogel systems. Colloids Surf, A 580:123751

    Article  CAS  Google Scholar 

  69. Qiao Y, Wang Y, Jian J, Li M, Jiang G, Li X, Deng G, Ji S, Wei Y, Pang Y (2020) Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon 156:253–260

    Article  CAS  Google Scholar 

  70. Romagnoli P, Di Vona ML, Traversa E, Narici L, Sannita WG, Carozzo S, Trombetta M, Licoccia S (2002) Development of new ceramic doped ionoconducting membranes for biomedical applications. MRS Online Proc Libr Arch 756

  71. Sharma G, Kumar R, Chowdhury SR (2019) Fabrication of dual purpose spiking electrode for sensing electroencephalogram signal and high definition transcranial direct current stimulation. IEEE Sens J 20(3):1664–1671

    Article  Google Scholar 

  72. Shuang F, Deng H, Shafique AB, Marsh S, Treiman D, Tsakalis K, Aifantis KE (2020) A first study on nanoporous tungsten recording electrodes for deep brain stimulation. Mater Lett 260:126885

    Article  Google Scholar 

  73. Greiner HM, Horn PS, Tenney JR, Arya R, Jain SV, Holland KD, Leach JL, Miles L, Rose DF, Fujiwara H (2016) Preresection intraoperative electrocorticography (ECoG) abnormalities predict seizure-onset zone and outcome in pediatric epilepsy surgery. Epilepsia 57(4):582–589

    Article  Google Scholar 

  74. Fallegger F, Schiavone G, Pirondini E, Wagner FB, Vachicouras N, Serex L, Zegarek G, May A, Constanthin P, Palma M (2021) MRI-compatible and conformal electrocorticography grids for translational research. Adv Sci 8(9):2003761

    Article  Google Scholar 

  75. Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  CAS  Google Scholar 

  76. Im C, Seo J-M (2016) A review of electrodes for the electrical brain signal recording. Biomed Eng Lett 6(3):104–112

    Article  Google Scholar 

  77. Kim GH, Kim K, Lee E, An T, Choi W, Lim G, Shin JH (2018) Recent progress on microelectrodes in neural interfaces. Materials (Basel) 11(10). https://doi.org/10.3390/ma11101995

  78. Oribe S, Yoshida S, Kusama S, Osawa S-i, Nakagawa A, Iwasaki M, Tominaga T, Nishizawa M (2019) Hydrogel-based organic subdural electrode with high conformability to brain surface. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  79. Ahmadi E, Katnani HA, Daftari Besheli L, Gu Q, Atefi R, Villeneuve MY, Eskandar E, Lev MH, Golby AJ, Gupta R, Bonmassar G (2016) An electrocorticography grid with conductive nanoparticles in a polymer thick film on an organic substrate improves CT and MR imaging. Radiology 280(2):595–601. https://doi.org/10.1148/radiol.2016142529

    Article  Google Scholar 

  80. Driscoll N, Maleski K, Richardson AG, Murphy B, Anasori B, Lucas TH, Gogotsi Y, Vitale F (2020) Fabrication of Ti3C2 MXene microelectrode arrays for in vivo neural recording. JoVE (J Visualized Exp) 156:e60741

    Google Scholar 

  81. Martinez-Rios C, McAndrews MP, Logan W, Krings T, Lee D, Widjaja E (2016) MRI in the evaluation of localization-related epilepsy. J Magn Reson Imaging 44(1):12–22

    Article  Google Scholar 

  82. Berger A (2002) How does it work?: magnetic resonance imaging. BMJ: British Med J 324(7328):35

  83. Hanaoka K, Lubag AJM, Castillo-Muzquiz A, Kodadek T, Sherry AD (2008) The detection limit of a Gd3+-based T1 agent is substantially reduced when targeted to a protein microdomain. Magn Reson Imaging 26(5):608–617

    Article  CAS  Google Scholar 

  84. Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging: Off J Int Soc Magn Reson Med 30(6):1259–1267

    Article  Google Scholar 

  85. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782

    Article  Google Scholar 

  86. Marasini R, Thanh Nguyen TD, Aryal S (2020) Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. Wiley Interdiscip Rev: Nanomedicine Nanobiotech 12(1):e1580

    CAS  Google Scholar 

  87. Ni D, Bu W, Ehlerding EB, Cai W, Shi J (2017) Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46(23):7438–7468

    Article  CAS  Google Scholar 

  88. Zhang J, Shin MC, Yang VC (2014) Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharm Res 31(3):579–592

    Article  Google Scholar 

  89. Sanjai C, Kothan S, Gonil P, Saesoo S, Sajomsang W (2014) Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent. Carbohyd Polym 104:231–237

    Article  CAS  Google Scholar 

  90. Naha PC, Al Zaki A, Hecht E, Chorny M, Chhour P, Blankemeyer E, Yates DM, Witschey WR, Litt HI, Tsourkas A (2014) Dextran coated bismuth–iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. J Mater Chem B 2(46):8239–8248

    Article  CAS  Google Scholar 

  91. Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364

    Article  CAS  Google Scholar 

  92. Shah A, Dobrovolskaia MA (2018) Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine: Nanotechnology, Biol Med 14(3):977–990

  93. Alves KG, Andrade CA, Campello SL, de Souza RE, de Melo CP (2013) Magnetite/polypyrrole hybrid nanocomposites as a promising magnetic resonance imaging contrast material. J Appl Polym Sci 128(5):3170–3176

    Article  CAS  Google Scholar 

  94. Fu T, Kong Q, Sheng H, Gao L (2016) Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plasticity 2016

  95. Perlman O, Weitz IS, Azhari H (2015) Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 60(15):5767

    Article  CAS  Google Scholar 

  96. Akhtari M, Bragin A, Cohen M, Moats R, Brenker F, Lynch M, Harry Vinters H, Engel J (2008) Targeted magnetonanoparticles in the diagnosis, localization, and enhanced therapy of epilepsy. Epilepsia 49(8):1419–14130

    Article  Google Scholar 

  97. Champagne P-O, Sanon NT, Carmant L, Pouliot P, Bouthillier A, Sawan M (2021) Feasibility of implantable iron oxide nanoparticles in detecting brain activity—proof of concept in a rat model. Epilepsy Res 172:106585

    Article  CAS  Google Scholar 

  98. Du C, Wang J, Liu X, Li H, Geng D, Yu L, Chen Y, Zhang J (2020) Construction of Pepstatin A-conjugated ultrasmall SPIONs for targeted positive MR imaging of epilepsy-overexpressed P-glycoprotein. Biomaterials 230:119581

    Article  CAS  Google Scholar 

  99. Yu X, Wang J, Liu J, Shen S, Cao Z, Pan J, Zhou S, Pang Z, Geng D, Zhang J (2016) A multimodal Pepstatin A peptide-based nanoagent for the molecular imaging of P-glycoprotein in the brains of epilepsy rats. Biomaterials 76:173–186

    Article  CAS  Google Scholar 

  100. Yang K, Liu Y, Liu Y, Zhang Q, Kong C, Yi C, Zhou Z, Wang Z, Zhang G, Zhang Y (2018) Cooperative assembly of magneto-nanovesicles with tunable wall thickness and permeability for MRI-guided drug delivery. J Am Chem Soc 140(13):4666–4677

    Article  CAS  Google Scholar 

  101. Wang Y, Wang Y, Sun R, Wu X, Chu X, Zhou S, Hu X, Gao L, Kong Q (2018) The treatment value of IL-1β monoclonal antibody under the targeting location of alpha-methyl-L-tryptophan and superparamagnetic iron oxide nanoparticles in an acute temporal lobe epilepsy model. J Transl Med 16(1):1–13

    Article  Google Scholar 

  102. Chen W, Yi P, Zhang Y, Zhang L, Deng Z, Zhang Z (2011) Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl Mater Interfaces 3(10):4085–4091

    Article  CAS  Google Scholar 

  103. Cisneros BT, Law JJ, Matson ML, Azhdarinia A, Sevick-Muraca EM, Wilson LJ (2014) Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging. Nanomedicine 9(16):2499–2509

    Article  CAS  Google Scholar 

  104. Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J (2017) Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 139(3):1275–1284

    Article  CAS  Google Scholar 

  105. Yang Z, Dai Y, Shan L, Shen Z, Wang Z, Yung BC, Jacobson O, Liu Y, Tang W, Wang S (2019) Tumour microenvironment-responsive semiconducting polymer-based self-assembling nanotheranostics. Nanoscale Horizons 4(2):426–433

    Article  CAS  Google Scholar 

  106. Park S, Cho B-B, Anusha J, Jung S, Justin Raj C, Kim BC, Yu KH (2020) Synthesis of 64Cu-radiolabeled folate-conjugated iron oxide nanoparticles for cancer diagnosis. J Nanosci Nanotechnol 20(4):2040–2044

    Article  CAS  Google Scholar 

  107. Peng N, Ding X, Wang Z, Cheng Y, Gong Z, Xu X, Gao X, Cai Q, Huang S, Liu Y (2019) Novel dual responsive alginate-based magnetic nanogels for onco-theranostics. Carbohyd Polym 204:32–41

    Article  CAS  Google Scholar 

  108. Xu L, Hong SH, Sun Y, Sun Z, Shou K, Cheng K, Chen H, Huang D, Xu H, Cheng Z (2018) Dual T1 and T2 weighted magnetic resonance imaging based on Gd3+ loaded bioinspired melanin dots. Nanomedicine: Nanotechnol, Biol Med 14(6):1743–1752

  109. Yang H-W, Huang C-Y, Lin C-W, Liu H-L, Huang C-W, Liao S-S, Chen P-Y, Lu Y-J, Wei K-C, Ma C-CM (2014) Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials 35(24):6534–6542

    Article  CAS  Google Scholar 

  110. Yaghoobi F, Torabi M, Kefayat A, Ghahremani F, Farzadniya A (2019) Therapeutic effect of deferrioxamine conjugated to PEGylated gold nanoparticles and complexed with Mn (II) beside the CT scan and MRI diagnostic studies. Colloids Surf, A 583:123917

    Article  CAS  Google Scholar 

  111. Lin J, Huang Y, Huang P (2018) Graphene-based nanomaterials in bioimaging. In: Biomedical Applications of Functionalized Nanomaterials. Elsevier, 247–287

  112. Faucon A-L, Bobrie G, Clément O (2019) Nephrotoxicity of iodinated contrast media: from pathophysiology to prevention strategies. Eur J Radiol 116:231–241

    Article  Google Scholar 

  113. Liu Z, Li Z, Liu J, Gu S, Yuan Q, Ren J, Qu X (2012) Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-ray CT imaging contrast agent. Biomaterials 33(28):6748–6757

    Article  CAS  Google Scholar 

  114. Meir R, Popovtzer R (2018) Cell tracking using gold nanoparticles and computed tomography imaging. Wiley Interdiscip Rev: Nanomedicine Nanobiotechnology 10(2):e1480

    Google Scholar 

  115. Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9(1):37–52. https://doi.org/10.1002/cmmi.1551

    Article  CAS  Google Scholar 

  116. Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, Cormode DP (2017) Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem 28(6):1581–1597. https://doi.org/10.1021/acs.bioconjchem.7b00194

    Article  CAS  Google Scholar 

  117. Grimm J (2021) Electric boost of MRI contrast for epileptic foci. Nature Biomed Eng 5(3):199–200

    Article  CAS  Google Scholar 

  118. Wang C, Sun W, Zhang J, Zhang J, Guo Q, Zhou X, Fan D, Liu H, Qi M, Gao X (2021) An electric-field-responsive paramagnetic contrast agent enhances the visualization of epileptic foci in mouse models of drug-resistant epilepsy. Nature Biomed Eng 5(3):278–289

    Article  CAS  Google Scholar 

  119. Ashton JR, West JL, Badea CT (2015) In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 4(6):256. https://doi.org/10.3389/fphar.2015.00256

    Article  CAS  Google Scholar 

  120. Alamzadeh Z, Beik J, Mahabadi VP, Ardekani AA, Ghader A, Kamrava SK, Dezfuli AS, Ghaznavi H, Shakeri-Zadeh A (2019) Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method. J Photochem Photobiol, B 192:19–25

    Article  CAS  Google Scholar 

  121. Hao L, Li Y, Zhu J, Sun N, Song N, Xing Y, Huang H, Zhao J (2019) Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J Nanobiotechnology 17(1):30

  122. Tian M, Lu W, Zhang R, Xiong C, Ensor J, Nazario J, Jackson J, Shaw C, Dixon KA, Miller J (2013) Tumor uptake of hollow gold nanospheres after intravenous and intra-arterial injection: PET/CT study in a rabbit VX2 liver cancer model. Mol Imag Biol 15(5):614–624

    Article  Google Scholar 

  123. Jang B, Park S, Kang SH, Kim JK, Kim S-K, Kim I-H, Choi Y (2012) Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo. Quant Imaging Med Surg 2(1):1

    Google Scholar 

  124. Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821

    Article  CAS  Google Scholar 

  125. Jin Y, Li Y, Ma X, Zha Z, Shi L, Tian J, Dai Z (2014) Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 35(22):5795–5804

    Article  CAS  Google Scholar 

  126. Algethami M, Blencowe A, Feltis B, Geso M (2017) Bismuth sulfide nanoparticles as a complement to traditional iodinated contrast agents at various X-ray computed tomography tube potentials. J Nanomater Mol Nanotechnol 6(4 of 9):25–28

  127. Robison L, Zhang L, Drout RJ, Li P, Haney CR, Brikha A, Noh H, Mehdi BL, Browning ND, Dravid VP (2019) A bismuth metal–organic framework as a contrast agent for X-ray computed tomography. ACS Appl Bio Mater 2(3):1197–1203

    Article  CAS  Google Scholar 

  128. Liu M, Shi Z, Wang X, Zhang Y, Mo X, Jiang R, Liu Z, Fan L, Ma C-g, Shi F (2018) Simultaneous enhancement of red upconversion luminescence and CT contrast of NaGdF4:Yb, Er nanoparticles via Lu3+ doping. Nanoscale 10(43):20279–20288

    Article  CAS  Google Scholar 

  129. Woodward JD, Kennel SJ, Mirzadeh S, Dai S, Wall JS, Richey T, Avenell J, Rondinone AJ (2007) In vivo SPECT/CT imaging and biodistribution using radioactive Cd125mTe/ZnS nanoparticles. Nanotechnology 18(17):175103

    Article  Google Scholar 

  130. Zhang H, Wu H, Wang J, Yang Y, Wu D, Zhang Y, Zhang Y, Zhou Z, Yang S (2015) Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials 42:66–77

    Article  Google Scholar 

  131. Kim J, Silva AB, Hsu JC, Maidment PS, Shapira N, Noël PB, Cormode DP (2019) Radioprotective garment-inspired biodegradable polymetal nanoparticles for enhanced CT contrast production. Chem Mater 32(1):381–391

    Article  Google Scholar 

  132. Goodman AM, Szaflarski JP (2021) Recent advances in neuroimaging of epilepsy. Neurotherapeutics 1–16

  133. Ni D, Ehlerding EB, Cai W (2019) Multimodality imaging agents with PET as the fundamental pillar. Angew Chem Int Ed 58(9):2570–2579

    Article  CAS  Google Scholar 

  134. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gönen M, Kalaigian H, Schöder H (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149–260ra149

  135. Kumar A, Chugani HT (2013) The role of radionuclide imaging in epilepsy, part 1: sporadic temporal and extratemporal lobe epilepsy. J Nucl Med 54(10):1775–1781

    CAS  Google Scholar 

  136. Masdeu JC, Arbizu J (2008) Brain single photon emission computed tomography: technological aspects and clinical applications. In: Seminars in neurology vol 04. © Thieme Medical Publishers, pp 423–434

  137. Xing Y, Zhu J, Zhao L, Xiong Z, Li Y, Wu S, Chand G, Shi X, Zhao J (2018) SPECT/CT imaging of chemotherapy-induced tumor apoptosis using 99mTc-labeled dendrimer-entrapped gold nanoparticles. Drug Delivery 25(1):1384–1393

    Article  CAS  Google Scholar 

  138. Nosrati Z, Esquinas PL, Rodríguez-Rodríguez C, Tran T, Maharaj A, Saatchi K, Häfeli UO (2021) Simultaneous SPECT imaging with 123I and 125I-a practical approach to assessing a drug and its carrier at the same time with dual imaging. Int J Pharm 120884

  139. Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R (2016) Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10(3):3453–3460

    Article  CAS  Google Scholar 

  140. Zhang H, Wang T, Qiu W, Han Y, Sun Q, Zeng J, Yan F, Zheng H, Li Z, Gao M (2018) Monitoring the opening and recovery of the blood–brain barrier with noninvasive molecular imaging by biodegradable ultrasmall Cu2−x Se nanoparticles. Nano Lett 18(8):4985–4992

    Article  CAS  Google Scholar 

  141. Pressly ED, Pierce RA, Connal LA, Hawker CJ, Liu Y (2013) Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug Chem 24(2):196–204

    Article  CAS  Google Scholar 

  142. Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, Tian M, Liang D, Li C (2010) A chelator-free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 132(43):15351–15358

    Article  CAS  Google Scholar 

  143. Chen F, Hong H, Zhang Y, Valdovinos HF, Shi S, Kwon GS, Theuer CP, Barnhart TE, Cai W (2013) In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7(10):9027–9039

    Article  CAS  Google Scholar 

  144. Black KC, Akers WJ, Sudlow G, Xu B, Laforest R, Achilefu S (2015) Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale 7(2):440–444

    Article  CAS  Google Scholar 

  145. Burke BP, Baghdadi N, Kownacka AE, Nigam S, Clemente GS, Al-Yassiry MM, Domarkas J, Lorch M, Pickles M, Gibbs P (2015) Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions. Nanoscale 7(36):14889–14896

    Article  CAS  Google Scholar 

  146. Sun X, Huang X, Guo J, Zhu W, Ding Y, Niu G, Wang A, Kiesewetter DO, Wang ZL, Sun S (2014) Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc 136(5):1706–1709

    Article  CAS  Google Scholar 

  147. Cai W, Chen K, Li Z-B, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48(11):1862–1870

    Article  CAS  Google Scholar 

  148. Han W, Yang W, Gao F, Cai P, Wang J, Wang S, Xue J, Gao X, Liu Y (2020) Iodine-124 labeled gold nanoclusters for positron emission tomography imaging in lung cancer model. J Nanosci Nanotechnol 20(3):1375–1382

    Article  CAS  Google Scholar 

  149. Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Lindén M (2014) Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale 6(9):4928–4935

    Article  CAS  Google Scholar 

  150. Morales-Avila E, Ferro-Flores G, Ocampo-García BE, De León-Rodríguez LM, Santos-Cuevas CL, García-Becerra R, Medina LA, Gómez-Oliván L (2011) Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c [RGDfK (C)] for molecular imaging of tumor α (v) β (3) expression. Bioconjug Chem 22(5):913–922

    Article  CAS  Google Scholar 

  151. Yang Y, Sun Y, Cao T, Peng J, Liu Y, Wu Y, Feng W, Zhang Y, Li F (2013) Hydrothermal synthesis of NaLuF4: 153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34(3):774–783

    Article  CAS  Google Scholar 

  152. Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7(4):348–354. https://doi.org/10.1007/s11910-007-0053-z

    Article  CAS  Google Scholar 

  153. Engel J Jr (2008) Progress in epilepsy: reducing the treatment gap and the promise of biomarkers. Curr Opin Neurol 21(2):150–154

    Article  Google Scholar 

  154. Robinson K, Tiriveedhi V (2020) Perplexing role of P-glycoprotein in tumor microenvironment. Front Oncol 10:265

    Article  Google Scholar 

  155. Lasseter HC, Provost AC, Chaby LE, Daskalakis NP, Haas M, Jeromin A (2020) Cross-platform comparison of highly sensitive immunoassay technologies for cytokine markers: platform performance in post-traumatic stress disorder and Parkinson’s disease. Cytokine: X 2(2):100027

  156. Swierczewska M, Liu G, Lee S, Chen X (2012) High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 41(7):2641–2655

    Article  CAS  Google Scholar 

  157. Oka M, Itoh Y, Shimidzu T, Ukai Y, Yoshikuni Y, Kimura K (1997) Involvement of metabotropic glutamate receptors in Gi- and Gs-dependent modulation of adenylate cyclase activity induced by a novel cognition enhancer NS-105 in rat brain. Brain Res 754(1–2):121–130. https://doi.org/10.1016/s0006-8993(97)00064-4

    Article  CAS  Google Scholar 

  158. Miyamoto M, Murphy TH, Schnaar RL, Coyle JT (1989) Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther 250(3):1132–1140

    CAS  Google Scholar 

  159. David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, Friedman A (2009) Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci 29(34):10588–10599. https://doi.org/10.1523/JNEUROSCI.2323-09.2009

    Article  CAS  Google Scholar 

  160. Doi T, Ueda Y, Tokumaru J, Willmore LJ (2005) Molecular regulation of glutamate and GABA transporter proteins by clobazam during epileptogenesis in Fe(+++)-induced epileptic rats. Brain Res Mol Brain Res 142 (2):91–96. https://doi.org/10.1016/j.molbrainres.2005.09.010

  161. Merlin LR (2008) The ups and downs of hippocampal metabotropic glutamate receptors: ramifications for epileptogenesis and cognitive impairment following status epilepticus. Epilepsy Curr 8(2):43–45. https://doi.org/10.1111/j.1535-7511.2008.00232.x

    Article  Google Scholar 

  162. Kobylarek D, Iwanowski P, Lewandowska Z, Limphaibool N, Szafranek S, Labrzycka A, Kozubski W (2019) Advances in the potential biomarkers of epilepsy. Front Neurol 10:685

    Article  Google Scholar 

  163. Batra B, Pundir C (2013) An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron 47:496–501

    Article  CAS  Google Scholar 

  164. Liu X, Zhang W, Huang L, Hu N, Liu W, Liu Y, Li S, Yang C, Suo Y, Wang J (2018) Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchim Acta 185(4):234

    Article  Google Scholar 

  165. Bozzi Y, Borrelli E (2013) The role of dopamine signaling in epileptogenesis. Front Cell Neurosci 7:157

    Article  CAS  Google Scholar 

  166. Pang P, Yan F, Li H, Li H, Zhang Y, Wang H, Wu Z, Yang W (2016) Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Anal Methods 8(24):4912–4918

    Article  CAS  Google Scholar 

  167. Saleem W, Broderick PA (2013) Biomarkers for brain disorders electrochemically detected by BRODERICK PROBE microelectrodes/biosensors.

  168. Engel J Jr, Bragin A, Staba R (2018) Nonictal EEG biomarkers for diagnosis and treatment. Epilepsia open 3:120–126

    Article  Google Scholar 

  169. Gray M, Meehan J, Ward C, Langdon SP, Kunkler IH, Murray A, Argyle D (2018) Implantable biosensors and their contribution to the future of precision medicine. Vet J 239:21–29

    Article  CAS  Google Scholar 

  170. Milošević M, Van de Vel A, Cuppens K, Bonroy B, Ceulemans B, Lagae L, Vanrumste B, Van Huffel S (2017) Feature selection methods for accelerometry-based seizure detection in children. Med Biol Eng Compu 55(1):151–165

    Article  Google Scholar 

  171. Jimenez-Mateos E, Engel T, Merino-Serrais P, McKiernan R, Tanaka K, Mouri G, Sano T (2012) O¿ Tuathaigh C, Waddington JL, Prenter S, Delanty N, Farrell MA, O¿ Brien DF, Conroy RM, Stallings RL, DeFelipe J, Henshall DC: Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18(7):1087–1094

    Article  CAS  Google Scholar 

  172. Ghosh S, Kumar V, Mukherjee H, Lahiri D, Roy P (2021) Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon e07262

  173. Raoof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F, Lang J, Onugoren MD, Hamer H, Huchtemann T, Körtvélyessy P (2017) Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 7(1):1–17

    Article  CAS  Google Scholar 

  174. Yang L, Liu C, Ren W, Li Z (2012) Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS Appl Mater Interfaces 4(12):6450–6453

    Article  CAS  Google Scholar 

  175. Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M (2013) A review on the electrochemical biosensors for determination of microRNAs. Talanta 115:74–83

    Article  CAS  Google Scholar 

  176. Liu L, Xia N, Liu H, Kang X, Liu X, Xue C, He X (2014) Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosens Bioelectron 53:399–405

    Article  CAS  Google Scholar 

  177. Palecek E, Bartosik M (2012) Electrochemistry of nucleic acids. Chem Rev 112(6):3427–3481

    Article  CAS  Google Scholar 

  178. Spain E, Jimenez-Mateos EM, Raoof R, ElNaggar H, Delanty N, Forster RJ, Henshall DC (2015) Direct, non-amplified detection of microRNA-134 in plasma from epilepsy patients. RSC Adv 5(109):90071–90078

    Article  CAS  Google Scholar 

  179. McArdle H, Jimenez-Mateos EM, Raoof R, Carthy E, Boyle D, ElNaggar H, Delanty N, Hamer H, Dogan M, Huchtemann T (2017) “TORNADO”—Theranostic One-Step RNA Detector; microfluidic disc for the direct detection of microRNA-134 in plasma and cerebrospinal fluid. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  180. Anissian D, Ghasemi-Kasman M, Khalili-Fomeshi M, Akbari A, Hashemian M, Kazemi S, Moghadamnia AA (2018) Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int J Biol Macromol 107:973–983

    Article  CAS  Google Scholar 

  181. Hashemian M, Anissian D, Ghasemi-Kasman M, Akbari A, Khalili-Fomeshi M, Ghasemi S, Ahmadi F, Moghadamnia AA, Ebrahimpour A (2017) Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 79:462–471

    Article  CAS  Google Scholar 

  182. Yousfan A, Rubio N, Natouf AH, Daher A, Al-Kafry N, Venner K, Kafa H (2020) Preparation and characterisation of PHT-loaded chitosan lecithin nanoparticles for intranasal drug delivery to the brain. RSC Adv 10(48):28992–29009

    Article  CAS  Google Scholar 

  183. Salama AH, Salama AAA, Elhabak M (2021) Single step nanospray drying preparation technique of gabapentin-loaded nanoparticles-mediated brain delivery for effective treatment of PTZ-induced seizures. Int J Pharm 602:120604. https://doi.org/10.1016/j.ijpharm.2021.120604

    Article  CAS  Google Scholar 

  184. Hsiao M-H, Larsson M, Larsson A, Evenbratt H, Chen Y-Y, Chen Y-Y, Liu D-M (2012) Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide. J Control Release 161(3):942–948

    Article  CAS  Google Scholar 

  185. Lopez T, Alexander-Katz R, Castillo P, González M, Manjarrez J, Gonzalez R, Ilharco L, Fidalgo A, Rieumont J (2009) Kinetic study of controlled release of VPA and DPH antiepileptic drugs using biocompatible nanostructured sol–gel TiO2. J Mater Sci 44(20):5459–5468

    Article  CAS  Google Scholar 

  186. López T, Patiño-Ortiz M, Balankin AS, González RD (2009) Fractal analysis of tissue biocompatible neuroreservoir. Applied Mechanics and Materials. Trans Tech Publ, pp 121–126

    Google Scholar 

  187. Lopez T, Espinoza K, Kozina A, Galano A, Alexander-Katz R (2010) Role of hydrolysis degree in the drug–matrix interactions of nanosized sol–gel titania reservoirs for epilepsy treatment. J Phys Chem C 114(47):20022–20027

    Article  CAS  Google Scholar 

  188. Praveen A, Aqil M, Imam SS, Ahad A, Moolakkadath T, Ahmad FJ (2019) Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: formulation design, characterization and nasal toxicity study. Colloids Surf, B 174:553–562

    Article  CAS  Google Scholar 

  189. Varshosaz J, Eskandari S, Tabakhian M (2010) Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design. Pharm Dev Technol 15(1):89–96

    Article  CAS  Google Scholar 

  190. Huang W-C, Hu S-H, Liu K-H, Chen S-Y, Liu D-M (2009) A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs. J Control Release 139(3):221–228

    Article  CAS  Google Scholar 

  191. He W, Wang Y, Lv Y, Xiao Q, Ye L, Cai B, Qin C, Han X, Cai T, Yin L (2017) Denatured protein stabilized drug nanoparticles: tunable drug state and penetration across the intestinal barrier. J Mater Chem B 5(5):1081–1097

    Article  CAS  Google Scholar 

  192. Meenu M, Reeta K, Dinda AK, Kottarath SK, Gupta YK (2019) Evaluation of sodium valproate loaded nanoparticles in acute and chronic pentylenetetrazole induced seizure models. Epilepsy Res 158:106219

    Article  CAS  Google Scholar 

  193. Lopalco A, Ali H, Denora N, Rytting E (2015) Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood–brain barrier and human placental trophoblast. Int J Nanomed 10:1985

    CAS  Google Scholar 

  194. Friese A, Seiller E, Quack G, Lorenz B, Kreuter J (2000) Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly (butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 49(2):103–109

    Article  CAS  Google Scholar 

  195. Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z (2014) Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew Chem 126(46):12644–12648

    Article  Google Scholar 

  196. Natchimuthu V, Amoros J, Ravi S (2016) Fluorination of an antiepileptic drug: a self supporting transporter by oxygen enrichment mechanism. J Chem Neuroanat 72:8–15

    Article  CAS  Google Scholar 

  197. Jain N, Akhter S, Jain GK, Khan ZI, Khar RK, Ahmad FJ (2011) Antiepileptic intranasal Amiloride loaded mucoadhesive nanoemulsion: development and safety assessment. J Biomed Nanotechnol 7(1):142–143

    Article  CAS  Google Scholar 

  198. Shefrin S, Sreelaxmi C, Vishnu Vijayan SC (2019) Anti-epileptic drug loaded niosomal transdermal patch for enhanced skin permeation. Int J App Pharm 11(2):31–43

    CAS  Google Scholar 

  199. Wilz A, Pritchard EM, Li T, Lan J-Q, Kaplan DL, Boison D (2008) Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 29(26):3609–3616

    Article  CAS  Google Scholar 

  200. Portnoy E, Polyak B, Inbar D, Kenan G, Rai A, Wehrli SL, Roberts TP, Bishara A, Mann A, Shmuel M (2016) Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine: Nanotechnol, Biol Med 12(5):1335–1345

  201. Figueiredo KA, Medeiros SC, Neves JKO, da Silva JA, da Rocha TA, Carvalho ALM, de Freitas RM (2015) In vivo evaluation of anticonvulsant and antioxidant effects of phenobarbital microemulsion for transdermal administration in pilocarpine seizure rat model. Pharmacol Biochem Behav 131:6–12

    Article  CAS  Google Scholar 

  202. Gernert M, Feja M (2020) Bypassing the blood–brain barrier: direct intracranial drug delivery in epilepsies. Pharmaceutics 12(12):1134

    Article  CAS  Google Scholar 

  203. Cárdenas-Rodríguez N, Carmona-Aparicio L, Pérez-Lozano DL, Ortega-Cuellar D, Gómez-Manzo S, Ignacio-Mejía I (2020) Genetic variations associated with pharmacoresistant epilepsy. Mol Med Rep 21(4):1685–1701

    Google Scholar 

  204. Zhang C, Kwan P, Zuo Z, Baum L (2012) The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 64(10):930–942

    Article  CAS  Google Scholar 

  205. Heinrich A, Zhong X-b, Rasmussen TP (2018) Variability in expression of the human MDR1 drug efflux transporter and genetic variation of the ABCB1 gene: implications for drug-resistant epilepsy. Current opinion in toxicology 11:35–42

    Article  Google Scholar 

  206. Bauer M, Karch R, Tournier N, Cisternino S, Wadsak W, Hacker M, Marhofer P, Zeitlinger M, Langer O (2017) Assessment of P-glycoprotein transport activity at the human blood–retina barrier with (R)-11C-verapamil PET. J Nucl Med 58(4):678–681

    Article  CAS  Google Scholar 

  207. Nigam K, Kaur A, Tyagi A, Nematullah M, Khan F, Gabrani R, Dang S (2019) Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv Transl Res 9(5):879–890

    Article  CAS  Google Scholar 

  208. Zhou P, Wang J, Du X, Huang T, Nallathamby PD, Yang L, Zou W, Zhou Y, Jault J-M, Chen S (2018) Nanoparticles in biomedicine-focus on imaging applications. Eng Sci 5:1–20

    Google Scholar 

  209. Hannocks M-J, Huppert J, Zhang X, Korpos E, Sorokin L (2017) The contribution of the extracellular matrix to the BBB in steady state and inflammatory conditions. In: The Blood Brain Barrier and Inflammation. Springer, 49–60

  210. Gastfriend BD, Palecek SP, Shusta EV (2018) Modeling the blood–brain barrier: beyond the endothelial cells. Curr Opin Biomed Eng 5:6–12

    Article  Google Scholar 

  211. Kung Y, Lan C, Hsiao M-Y, Sun M-K, Hsu Y-H, Huang AP-H, Liao W-H, Liu H-L, Inserra C, Chen W-S (2018) Focused shockwave induced blood-brain barrier opening and transfection. Sci Rep 8(1):1–11

    Article  Google Scholar 

  212. Chaturvedi S, Rashid M, Malik MY, Agarwal A, Singh SK, Gayen JR, Wahajuddin M (2019) Neuropharmacokinetics: a bridging tool between CNS drug development and therapeutic outcome. Drug Discovery Today 24(5):1166–1175

    Article  CAS  Google Scholar 

  213. Dalic L, Cook MJ (2016) Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat 12:2605

    Article  CAS  Google Scholar 

  214. Ilan Y, Tahel I (2020) A subject-specific system and method for prevention of body adaptation for chronic treatment of disease. Google Patents,

  215. Loscher W, Langer O (2010) Imaging of P-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy. Curr Top Med Chem 10(17):1785–1791

    Article  CAS  Google Scholar 

  216. Sahab-Negah S, Ariakia F, Jalili-Nik M, Afshari AR, Salehi S, Samini F, Rajabzadeh G, Gorji A (2020) Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: an in vitro study. Mol Neurobiol 57:3391–3411

    Article  CAS  Google Scholar 

  217. Balachandar K, Subramanian S (2020) Enhancement of solubility and bioavailability of modafinil using nanoparticles. Int J Res Pharm Sci 11(2):1358–1367

    Article  CAS  Google Scholar 

  218. Zhou Y, Peng Z, Seven ES, Leblanc RM (2018) Crossing the blood-brain barrier with nanoparticles. J Control Release 270:290–303

    Article  CAS  Google Scholar 

  219. Rampado R, Crotti S, Caliceti P, Pucciarelli S, Agostini M (2020) Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials. Front Bioeng Biotechnol 8:166. https://doi.org/10.3389/fbioe.2020.00166

    Article  Google Scholar 

  220. Tekie FSM, Hajiramezanali M, Geramifar P, Raoufi M, Dinarvand R, Soleimani M, Atyabi F (2020) Controlling evolution of protein corona: a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life. Sci Rep 10(1):1–14

    Article  Google Scholar 

  221. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar R-T, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16(1):1–33

    Article  Google Scholar 

  222. Helms HCC, Kristensen M, Saaby L, Fricker G, Brodin B (2020) Drug delivery strategies to overcome the blood–brain barrier (BBB).

  223. Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 65(1):121–138

    Article  CAS  Google Scholar 

  224. Upadhyay RK (2014) Transendothelial transport and its role in therapeutics. Int Sch Res Notices 2014:309404. https://doi.org/10.1155/2014/309404

    Article  Google Scholar 

  225. Bennewitz MF, Saltzman WM (2009) Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 6(2):323–336

    Article  CAS  Google Scholar 

  226. Saikia R, Goswami AK, Sharma HK (2016) Drug delivery to brain and bone marrow: a review. Eur J Biomed Pharm Sci 3:604–616

    CAS  Google Scholar 

  227. Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3(1):139–162. https://doi.org/10.1517/17425247.3.1.139

    Article  CAS  Google Scholar 

  228. Palazzo C, Laloy J, Delvigne A-S, Nys G, Fillet M, Dogne J-M, Pequeux C, Foidart J-M, Evrard B, Piel G (2019) Development of injectable liposomes and drug-in-cyclodextrin-in-liposome formulations encapsulating estetrol to prevent cerebral ischemia of premature babies. Eur J Pharm Sci 127:52–59

    Article  CAS  Google Scholar 

  229. Nag OK, Field LD, Chen Y, Sangtani A, Breger JC, Delehanty JB (2016) Controlled actuation of therapeutic nanoparticles: an update on recent progress. Ther Deliv 7(4):335–352

    Article  Google Scholar 

  230. Naje AN (2017) Surface plasmon resonance study of Ag nanoparticles colloidal. Iraqi J Sci 58(4B):2090–2097

    Google Scholar 

  231. Daglar B, Ozgur E, Corman M, Uzun L, Demirel G (2014) Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv 4(89):48639–48659

    Article  CAS  Google Scholar 

  232. Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK (2020) Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug “etoposide.” Mater Sci Eng, C 106:110275

    Article  CAS  Google Scholar 

  233. Ugur Yilmaz C, Emik S, Orhan N, Temizyurek A, Atis M, Akcan U, Khodadust R, Arican N, Kucuk M, Gurses C, Ahishali B, Kaya M (2020) Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats. Life Sci 257:118081. https://doi.org/10.1016/j.lfs.2020.118081

    Article  CAS  Google Scholar 

  234. Patel RJ, Parikh RH (2020) Intranasal delivery of topiramate nanoemulsion: pharmacodynamic, pharmacokinetic and brain uptake studies. Int J Pharm 585:119486. https://doi.org/10.1016/j.ijpharm.2020.119486

    Article  CAS  Google Scholar 

  235. Almeida JMFd, Damasceno Junior E, Silva EMF, Verissimo LM, Fernandes NS (2021) pH-responsive release system of topiramate transported on silica nanoparticles by melting method. Drug Dev Ind Pharm 47(1):126–145

    Article  CAS  Google Scholar 

  236. Musumeci T, Serapide MF, Pellitteri R, Dalpiaz A, Ferraro L, Dal Magro R, Bonaccorso A, Carbone C, Veiga F, Sancini G (2018) Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm 133:309–320

    Article  CAS  Google Scholar 

  237. Zybina A, Anshakova A, Malinovskaya J, Melnikov P, Baklaushev V, Chekhonin V, Maksimenko O, Titov S, Balabanyan V, Kreuter J, Gelperina S, Abbasova K (2018) Nanoparticle-based delivery of carbamazepine: a promising approach for the treatment of refractory epilepsy. Int J Pharm 547(1–2):10–23. https://doi.org/10.1016/j.ijpharm.2018.05.023

    Article  CAS  Google Scholar 

  238. Ammar HO, Ghorab MM, Mahmoud AA, Higazy IM (2018) Lamotrigine loaded poly-varepsilon-(D, L-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur J Pharm Sci 115:77–87. https://doi.org/10.1016/j.ejps.2018.01.028

    Article  CAS  Google Scholar 

  239. Shah P, Dubey P, Vyas B, Kaul A, Mishra AK, Chopra D, Patel P (2021) Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: pharmacokinetic, pharmacodynamic and scintigraphy study. Artif Cells, Nanomedicine, Biotechnol 49(1):511–522

    Article  CAS  Google Scholar 

  240. Ahmed MZ, Khan UA, Haye A, Agarwal NB, Alhakamy NA, Alhadrami HA, Warsi MH, Jain GK (2020) Liquid crystalline nanoparticles for nasal delivery of rosuvastatin: implications on therapeutic efficacy in management of epilepsy. Pharmaceuticals 13(11):356

    Article  CAS  Google Scholar 

  241. Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008) Poly (n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200:159–168

    Article  CAS  Google Scholar 

  242. Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461(1–2):192–202

    Article  CAS  Google Scholar 

  243. Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG (2014) Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 80:175–183

    Article  CAS  Google Scholar 

  244. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL (2010) Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 31(5):908–915. https://doi.org/10.1016/j.biomaterials.2009.09.104

    Article  CAS  Google Scholar 

  245. Fazil M, Md S, Haque S, Kumar M, Baboota S, Kaur Sahni J, Ali J (2012) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47(1):6–15

    Article  CAS  Google Scholar 

  246. Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y (2013) B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 24(6):997–1007

    Article  CAS  Google Scholar 

  247. Yin T, Xie W, Sun J, Yang L, Liu J (2016) Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer’s disease using ultralow irradiance. ACS Appl Mater Interfaces 8(30):19291–19302

    Article  CAS  Google Scholar 

  248. Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y (2014) Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 35(1):456–465

    Article  CAS  Google Scholar 

  249. Ghavami M, Rezaei M, Ejtehadi R, Lotfi M, Shokrgozar MA, Abd Emamy B, Raush J, Mahmoudi M (2013) Physiological temperature has a crucial role in amyloid beta in the absence and presence of hydrophobic and hydrophilic nanoparticles. ACS Chem Neurosci 4(3):375–378

    Article  CAS  Google Scholar 

  250. Mahmoudi M, Akhavan O, Ghavami M, Rezaee F, Ghiasi SMA (2012) Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 4(23):7322–7325

    Article  CAS  Google Scholar 

  251. Mahmoudi M, Monopoli MP, Rezaei M, Lynch I, Bertoli F, McManus J, Dawson KA (2013) The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. Chem BioChem 14(5):568–572

    CAS  Google Scholar 

  252. Winkler J, Ramirez GA, Kuhn HG, Peterson DA, Day-Lollini PA, Stewart GR, Tuszynski MH, Gage FH, Thal LJ (1997) Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 41(1):82–93

    Article  CAS  Google Scholar 

  253. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  CAS  Google Scholar 

  254. Hajipour MJ, Raheb J, Akhavan O, Arjmand S, Mashinchian O, Rahman M, Abdolahad M, Serpooshan V, Laurent S, Mahmoudi M (2015) Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale 7(19):8978–8994

    Article  CAS  Google Scholar 

  255. Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS ONE 8(8):e70618

    Article  CAS  Google Scholar 

  256. Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M (2013) Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev 113(3):1877–1903. https://doi.org/10.1021/cr200472g

    Article  CAS  Google Scholar 

  257. Garcia-Chica J, Paraiso D, WK, Tanabe S, Serra D, Herrero L, Casals N, Garcia J, Ariza X, Quader S, Rodriguez-Rodriguez R (2020) An overview of nanomedicines for neuron targeting. Nanomedicine (London, England) 15(16):1617–1636.https://doi.org/10.2217/nnm-2020-0088

Download references

Funding

This work was supported by the Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran to T. S.

Author information

Authors and Affiliations

Authors

Contributions

T. S. drafted the primary manuscript. A. Z. and T. G. conceived of the presented idea and wrote and critically revised the whole manuscript. F. B., A. E., and S. K. contributed to the preparation of the manuscript. A. G. critically reviewed the manuscript and drafted the final version. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Tahereh Ghadiri or Ali Gorji.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepasi, T., Ghadiri, T., Bani, F. et al. Nanotechnology-based approaches in diagnosis and treatment of epilepsy. J Nanopart Res 24, 199 (2022). https://doi.org/10.1007/s11051-022-05557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05557-6

Keywords

Navigation