Skip to main content
Log in

Synthesis and electrochemical analysis of S/ZIF-67@rGO composite cathodes for lithium-sulfur batteries

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, we developed ZIF-67@rGO composite by coating reduced graphene oxide (rGO) on the surface of ZIF-67 via the spray drying method to obtain a highly efficient sulfur host for lithium-sulfur (Li–S) batteries. The resulted ZIF-67@rGO composite possesses a hierarchical architecture, in which ZIF-67 polyhedron closely clustered and coated by rGO. The rGO coating shell could maintain the structural stability and provide high conductivity paths for effective charge transport. The ZIF-67 core possesses abundant adsorptive site to provide chemical interaction with lithium polysulfides (LiPSs). The size range of ZIF-67@rGO particles is about 2–5 μm, and the diameters of ZIF-67 nanoparticles are distributed between 500 and 900 nm. As results, the S/ZIF-67@rGO composite achieved the high initial discharge capacity of 1130.1 mAh g−1 and a capacity of 942.6 mAh g−1 remained after 100 cycles. This facile approach of spray-drying will open an alternative pathway to prepare an efficient and promising electrode material for advanced Li–S batteries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  2. He J, Chen Y, Manthiram A (2019) Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater 9:1900584. https://doi.org/10.1002/aenm.201900584

    Article  CAS  Google Scholar 

  3. He J, Hartmann G, Lee M, Hwang GS, Chen Y, Manthiram A (2019) Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ Sci 12:344–350. https://doi.org/10.1039/c8ee03252a

    Article  CAS  Google Scholar 

  4. Zhang Y, Li G, Wang J, Cui G, Wei X, Shui L, Kempa K, Zhou G, Wang X, Chen Z (2020) Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv Funct Mater 5:22–30. https://doi.org/10.1002/adfm.202001165

    Article  CAS  Google Scholar 

  5. He Y, Li M, Zhang Y, Shan Z, Zhao Y, Li J, Liu G, Liang C, Bakenov Z, Li Q (2020) All-purpose electrode design of flexible conductive scaffold toward high-performance Li-S batteries. Adv Funct Mater 5:19–30. https://doi.org/10.1002/adfm.202000613

    Article  CAS  Google Scholar 

  6. Peng HJ, Huang JQ, Cheng XB, Zhang Q (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7:1700260. https://doi.org/10.1002/aenm.201700260

    Article  CAS  Google Scholar 

  7. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751–11787. https://doi.org/10.1021/cr500062v

    Article  CAS  Google Scholar 

  8. Li R, Zhou X, Shen H, Yang M, Li C (2019) Conductive Holey MoO2-Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li-S batteries. ACS Nano 13:10049–10061. https://doi.org/10.1021/acsnano.9b02231

    Article  CAS  Google Scholar 

  9. Li GC, Li GR, Ye SH, Gao XP (2012) A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater 2:1238–1245. https://doi.org/10.1002/aenm.201200017

    Article  CAS  Google Scholar 

  10. Sun Z, Xie C, Fan Z, Shen F, Yin Y, Niu C, Han X (2020) Ultrathin dense double-walled carbon nanotube membrane for enhanced lithium-sulfur batteries. J Nanopart Res 22:160. https://doi.org/10.1007/s11051-020-04895-7

    Article  CAS  Google Scholar 

  11. Li N, Zheng M, Lu H, Hu Z, Shen C, Chang X, Ji G, Cao J, Shi Y (2012) High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chem Commun 48:4106–4108. https://doi.org/10.1039/c2cc17912a

    Article  CAS  Google Scholar 

  12. Wang T, Shi P, Chen J, Cheng S, Xiang H (2016) Effects of porous structure of carbon hosts on preparation and electrochemical performance of sulfur/carbon composites for lithium-sulfur batteries. J Nanopart Res 18:19. https://doi.org/10.1007/s11051-016-3331-3

    Article  CAS  Google Scholar 

  13. Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063. https://doi.org/10.1021/jp1114724

    Article  CAS  Google Scholar 

  14. Chang CH, Manthiram A (2017) Covalently grafted polysulfur-graphene nanocomposites for ultrahigh sulfur-loading lithium-polysulfur batteries. ACS Energy Lett 3:72–77. https://doi.org/10.1021/acsenergylett.7b01031

    Article  CAS  Google Scholar 

  15. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923. https://doi.org/10.1021/jacs.5b01613

    Article  CAS  Google Scholar 

  16. Li W, Zheng G, Yang Y, Seh ZW, Liu N, Cui Y (2013) High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc Natl Acad Sci 110:7148–7153. https://doi.org/10.1073/pnas.1220992110

    Article  Google Scholar 

  17. Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA (2017) Chemical bonding and physical trapping of sulfur in mesoporous Magnéli Ti4O7 microspheres for high-performance Li-S battery. Adv Energy Mater 7:1601616. https://doi.org/10.1002/aenm.201601616

    Article  CAS  Google Scholar 

  18. Wang D, Luo D, Zhang Y, Zhao Y, Zhou G, Shui L, Chen Z, Wang X (2021) Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 81:105602. https://doi.org/10.1016/j.nanoen.2020.105602

    Article  CAS  Google Scholar 

  19. Yu M, Ma J, Song H, Wang A, Tian F, Wang Y, Qiu H, Wang R (2016) Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ Sci 9:1495–1503. https://doi.org/10.1039/C5EE03902A

    Article  CAS  Google Scholar 

  20. Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759. https://doi.org/10.1038/ncomms5759

    Article  CAS  Google Scholar 

  21. Liu X, Huang JQ, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater 29:1601759. https://doi.org/10.1002/adma.201601759

    Article  CAS  Google Scholar 

  22. Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew Chem Int Ed 54:12886–12890. https://doi.org/10.1002/anie.201506972

    Article  CAS  Google Scholar 

  23. Fan Q, Liu W, Weng Z, Sun Y, Wang H (2015) Ternary hybrid material for high-performance lithium-sulfur battery. J Am Chem Soc 137:12946–12953. https://doi.org/10.1021/jacs.5b07071

    Article  CAS  Google Scholar 

  24. Qiu W, Li G, Luo D, Zhang Y, Zhao Y, Zhou G, Shui L, Wang X, Chen Z (2021) Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries. Adv Sci 8:2003400. https://doi.org/10.1002/advs.202003400

    Article  CAS  Google Scholar 

  25. Zhu H, Zhang Q, Zhu S (2015) Preparation of raspberry-like ZIF-8/PS composite spheres via dispersion polymerization. Dalton Trans 44:16752–16757. https://doi.org/10.1039/c5dt02627j

    Article  CAS  Google Scholar 

  26. Pang Q, Liang X, Kwok CY, Nazar LF (2015) Review-the importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J Electrochem Soc 162:2567–2576. https://doi.org/10.1149/2.0171514jes

    Article  CAS  Google Scholar 

  27. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  Google Scholar 

  28. Li Z, Li C, Ge X, Ma J, Zhang Z, Li Q, Wang C, Yin L (2016) Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 23:15–26. https://doi.org/10.1016/j.nanoen.2016.02.049

    Article  CAS  Google Scholar 

  29. Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M (2018) Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J Am Chem Soc 140:1812–1823. https://doi.org/10.1021/jacs.7b11589

    Article  CAS  Google Scholar 

  30. Wu W, Pu J, Wang J, Shen Z, Tang H, Deng Z, Tao X, Pan F, Zhang H (2018) Biomimetic bipolar microcapsules derived from Staphylococcus aureus for enhanced properties of lithium-sulfur battery cathodes. Adv Energy Mater 8:1702373. https://doi.org/10.1002/aenm.201702373

    Article  CAS  Google Scholar 

  31. Fu Y, Zu C, Manthiram A (2013) In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries. J Am Chem Soc 135:18044–18047. https://doi.org/10.1021/ja409705u

    Article  CAS  Google Scholar 

  32. Nandiyanto A, Takashi O, Wang W, Gradon L, Okuyama K (2019) Template-assisted spray-drying method for the fabrication of porous particles with tunable structures. Adv Powder Technol 30:2908–2924. https://doi.org/10.1016/j.apt.2019.08.037

    Article  Google Scholar 

  33. Kiet L, Annie M, Yasuhiko K, Mai T, Takashi O (2021) Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J Colloid Interf Sci 589:252–263. https://doi.org/10.1016/j.jcis.2020.12.077

    Article  CAS  Google Scholar 

  34. Kiet L, Yasuhiko K, Mai T, Iskandar F, Takashi O (2021) Sustainable porous hollow carbon spheres with high specific surface area derived from Kraft lignin. Adv Powder Technol 32:2064–2073. https://doi.org/10.1016/j.apt.2021.04.012

    Article  CAS  Google Scholar 

  35. Takashi O, Nandiyanto A, Okuyama K (2014) Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications. Adv Powder Technol 25:3–17. https://doi.org/10.1016/j.apt.2013.11.005

    Article  CAS  Google Scholar 

  36. Jin Y, Jung Y, Park D, Chung S, Kim S (2018) Synthesis and electrochemical analysis of electrode prepared from zeolitic imidazolate framework (ZIF)-67/graphene composite for lithium sulfur cells. Electrochim Acta 259:1021–1029. https://doi.org/10.1016/j.electacta.2017.11.016

    Article  CAS  Google Scholar 

  37. Luo S, Sun W, Ke J, Wang Y, Liu S, Hong X, Li Y, Chen Y, Xie W, Zheng C (2018) A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium-sulfur batteries. Nanoscale 10:22601–22611. https://doi.org/10.1039/C8NR06109B

    Article  CAS  Google Scholar 

  38. Chen S, Wu Z, Luo J, Han X, Wang J, Deng Q, Zeng Z, Deng S (2019) Constructing layered double hydroxide fences onto porous carbons as high-performance cathodes for lithium-sulfur batteries. Electrochim Acta 312:109–118. https://doi.org/10.1016/j.electacta.2019.04.113

    Article  CAS  Google Scholar 

  39. Liu S, Zhang X, Wu S, Chen X, Yang X, Yue W, Lu J, Zhou W (2019) Crepe cake structured layered double hydroxide/sulfur/graphene as a positive electrode material for Li-S batteries. ACS Nano 14:8220–8231. https://doi.org/10.1021/acsnano.0c01694

    Article  CAS  Google Scholar 

  40. Ma B, Gao Y, Niu M, Luo M, Li H, Bai Y, Sun K (2021) ZIF-67/Super P modified separator as an efficient polysulfide barrier for high-performance lithium-sulfur batteries. Solid State Ion 371:115750. https://doi.org/10.1016/j.ssi.2021.115750

    Article  CAS  Google Scholar 

  41. Cui B, Cai X, Wang W, Saha P, Wang G (2022) Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li-S batteries. J Energy Chem 66:91–99. https://doi.org/10.1016/j.jechem.2021.06.035

    Article  Google Scholar 

  42. Gu X, Lai C, Liu F, Yang W, Hou Y, Zhang S (2015) A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J Mater Chem A 3:9502–9509. https://doi.org/10.1039/C5TA00681C

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Hebei Province of China (B2021202028; B2020202052); State Key Laboratory of Reliability and Intelligence of Electrical Equipment (No. EERI_PI2020007), Hebei University of Technology, China; the Program for the Outstanding Young Talents of Hebei Province, China (YG.Z.); Chunhui Project of Ministry of Education of the People’s Republic of China (No. Z2017010); National Key R&D Program of China (No.2019YFC1908504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfeng Yang or Yongguang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X., Qiu, W. et al. Synthesis and electrochemical analysis of S/ZIF-67@rGO composite cathodes for lithium-sulfur batteries. J Nanopart Res 24, 137 (2022). https://doi.org/10.1007/s11051-022-05519-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05519-y

Keywords

Navigation