Skip to main content

Advertisement

Log in

B, N-doped carbon nanosheets embedded with Co nanoparticles for enhanced oxygen reduction reaction

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Co-based materials with optimized adsorption energy of reaction intermediates have become the promising electrocatalyst for enhanced oxygen reduction reaction (ORR). Here, B, N-doped carbon nanosheets embedded with Co nanoparticles are reported by a simple wet chemical method and further pyrolysis process. The average size of Co nanoparticles is 10.03 ± 1.6 nm. X-ray photoelectron spectroscopy and electrochemical measurements show that those doped with B enrich active sites of the catalyst with highly active B-C bond and provide greater electrochemical surface area for ORR. The material shows impressive ORR performance with a positive half-wave potential of 0.87 V and a superior limiting current density of 6.88 mA cm−2 outperforming commercial Pt/C in alkaline solution. Noticeably, the optimized electron structure of Co–N species significantly weakens the Co–O bond and adsorption energy of OOH*, which could promote the occurrence of close to the four-electron ORR process. This work, besides showing electrocatalysts with excellent ORR performance, provided an approach for optimizing catalytic activity of Co-based materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code availability

Not applicable.

References

  • An L, Jiang N, Li B, Hua S, Fu Y, Liu J et al (2018) A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. Journal of Materials Chemistry A 6:5962–5970

    Article  CAS  Google Scholar 

  • Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong W-C et al (2018) Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun 9:5422

    Article  CAS  Google Scholar 

  • Chen M, He Y, Spendelow JS, Wu G (2019) Atomically dispersed metal catalysts for oxygen reduction. ACS Energy Lett 4:1619–1633

    Article  CAS  Google Scholar 

  • Cheng Q, Han S, Mao K, Chen C, Yang L, Zou Z et al (2018) Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52:485–493

    Article  CAS  Google Scholar 

  • Choi CH, Baldizzone C, Polymeros G, Pizzutilo E, Kasian O, Schuppert AK et al (2016) Minimizing operando demetallation of Fe-N-C electrocatalysts in acidic medium. ACS Catal 6:3136–3146

    Article  CAS  Google Scholar 

  • Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B et al (2018) General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal 1:63–72

    Article  CAS  Google Scholar 

  • Feng J, Gao H, Zheng L, Chen Z, Zeng S, Jiang C et al (2020) A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat Commun 11:4341

    Article  Google Scholar 

  • Fragkos P, Tasios N, Paroussos L, Capros P, Tsani S (2017) Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050. Energy Policy 100:216–226

    Article  Google Scholar 

  • Guo Y, Yuan P, Zhang J, Hu Y, Amiinu IS, Wang X et al (2018) Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn–Air batteries. ACS Nano 12:1894–1901

    Article  CAS  Google Scholar 

  • Ha Y, Fei B, Yan X, Xu H, Chen Z, Shi L et al (2020) Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction. Adv Energy Mater 10:2002592

    Article  CAS  Google Scholar 

  • Hammer B, Noerskov JK (2000) ChemInform abstract: theoretical surface science and catalysis — calculations and concepts. ChemInform 45:71–129

    CAS  Google Scholar 

  • Jin J, Pan F, Jiang L, Fu X, Liang A, Wei Z et al (2014) Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano 8:3313–3321

    Article  CAS  Google Scholar 

  • Kim S-J, Mahmood J, Kim C, Han G-F, Kim S-W, Jung S-M et al (2018) Defect-free encapsulation of Fe0 in 2D fused organic networks as a durable oxygen reduction electrocatalyst. J Am Chem Soc 140:1737–1742

    Article  CAS  Google Scholar 

  • Lei C, Wang Y, Hou Y, Liu P, Yang J, Zhang T et al (2019) Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ Sci 12:149–156

    Article  CAS  Google Scholar 

  • Li H, Li Y, Koper MTM, Calle-Vallejo F (2014) Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J Am Chem Soc 136:15694–15701

    Article  CAS  Google Scholar 

  • Li K, Guo D, Kang J, Wei B, Zhang X, Chen Y (2018) Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn Air battery. ACS Sustainable Chemistry & Engineering 6:14641–14651

    Article  CAS  Google Scholar 

  • Li H, Zhang L, Li L, Wu C, Huo Y, Chen Y et al (2019a) Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. Nano Res 12:33–39

    Article  CAS  Google Scholar 

  • Li M, Duanmu K, Wan C, Cheng T, Zhang L, Dai S et al (2019b) Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat Catal 2:495–503

    Article  CAS  Google Scholar 

  • Li B-Q, Zhao C-X, Chen S, Liu J-N, Chen X, Song L et al (2019c) Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn–Air batteries. Adv Mater 31:1900592

    Article  CAS  Google Scholar 

  • Li J, Chen S, Yang N, Deng M, Ibraheem S, Deng J et al (2019d) Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew Chem Int Ed 58:7035–7039

    Article  CAS  Google Scholar 

  • Li P, Jin Z, Qian Y, Fang Z, Xiao D, Yu G (2019e) Probing enhanced site activity of Co–Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett 4:1793–1802

    Article  CAS  Google Scholar 

  • Li F, Han G-F, Bu Y, Noh H-J, Jeon J-P, Shin TJ et al (2020) Revealing isolated M−N3C1 active sites for efficient collaborative oxygen reduction catalysis. Angew Chem Int Ed 59:23678–23683

    Article  CAS  Google Scholar 

  • Liu X, Li W, Zou S (2018) Cobalt and nitrogen-codoped ordered mesoporous carbon as highly efficient bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A 6:17067–17074

    Article  CAS  Google Scholar 

  • Liu Y, Chen Z, Jia H, Xu H, Liu M, Wu R (2019a) Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano 13:6113–6124

    Article  CAS  Google Scholar 

  • Liu M, Zhao Z, Duan X, Huang Y (2019b) Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater 31:1802234

    Article  CAS  Google Scholar 

  • Lu X, Yim W-L, Suryanto BHR, Zhao C (2015) Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am Chem Soc 137:2901–2907

    Article  CAS  Google Scholar 

  • Luo E, Zhang H, Wang X, Gao L, Gong L, Zhao T et al (2019) Single-atom Cr−N4 sites designed for durable oxygen reduction catalysis in acid media. Angew Chem Int Ed 58:12469–12475

    Article  CAS  Google Scholar 

  • Martinez U, Komini Babu S, Holby EF, Chung HT, Yin X, Zelenay P (2019) Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv Mater 31:1806545

    Article  CAS  Google Scholar 

  • Najam T, Shah SSA, Ding W, Jiang J, Jia L, Yao W et al (2018) An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media. Angew Chem Int Ed 57:15101–15106

    Article  CAS  Google Scholar 

  • Pean C, Daffos B, Rotenberg B, Levitz P, Haefele M, Taberna P-L et al (2015) Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J Am Chem Soc 137:12627–12632

    Article  CAS  Google Scholar 

  • Qi D, Liu Y, Hu M, Peng X, Qiu Y, Zhang S et al (2020) Engineering atomic sites via adjacent dual-metal sub-nanoclusters for efficient oxygen reduction reaction and Zn-Air battery. Small 16:2004855

    Article  CAS  Google Scholar 

  • Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T et al (2015) Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat Commun 6:8618

    Article  CAS  Google Scholar 

  • Shi M-M, Bao D, Li S-J, Wulan B-R, Yan J-M, Jiang Q (2018) Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv Energy Mater 8:1800124

    Article  CAS  Google Scholar 

  • Song P, Luo M, Liu X, Xing W, Xu W, Jiang Z et al (2017) Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv Func Mater 27:1700802

    Article  CAS  Google Scholar 

  • Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W et al (2015) Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nat Commun 6:7343

    Article  CAS  Google Scholar 

  • Tong Y, Chen P, Zhou T, Xu K, Chu W, Wu C et al (2017) A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B, N-decorated graphene. Angew Chem Int Ed 56:7121–7125

    Article  CAS  Google Scholar 

  • Wang W, Hu Y, Liu Y, Zheng Z, Chen S (2018a) Self-powered and highly efficient production of H2O2 through a Zn–Air battery with oxygenated carbon electrocatalyst. ACS Appl Mater Interfaces 10:31855–31859

    Article  CAS  Google Scholar 

  • Wang Q, Fan Y, Wang K, Shen H, Li G, Fu H et al (2018b) Hierarchical tubular structures composed of CoPx and carbon nanotubes: highly effective electrocatalyst for oxygen reduction. Carbon 130:241–249

    Article  CAS  Google Scholar 

  • Wang W, Jia Q, Mukerjee S, Chen S (2019) Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. ACS Catal 9:10126–10141

    Article  CAS  Google Scholar 

  • Wang J, Li H, Liu S, Hu Y, Zhang J, Xia M et al (2021a) Turning on Zn 4s Electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew Chem Int Ed 60:181–185

    Article  CAS  Google Scholar 

  • Wang P, Zhao D, Yin L (2021b) Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy Environ Sci 14:1794–1834

    Article  CAS  Google Scholar 

  • Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  CAS  Google Scholar 

  • Wu H, Li H, Zhao X, Liu Q, Wang J, Xiao J et al (2016) Highly doped and exposed Cu(i)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ Sci 9:3736–3745

    Article  CAS  Google Scholar 

  • Xiao M, Xing Z, Jin Z, Liu C, Ge J, Zhu J et al (2020) Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn–Air batteries. Adv Mater 32:2004900

    Article  CAS  Google Scholar 

  • Xie X, He C, Li B, He Y, Cullen DA, Wegener EC et al (2020) Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nat Catal 3:1044–1054

    Article  CAS  Google Scholar 

  • Xu F, Zhai Y, Zhang E, Liu Q, Jiang G, Xu X et al (2020) Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets. Angew Chem Int Ed 59:19460–19467

    Article  CAS  Google Scholar 

  • Yang S, Huo J, Song H, Chen X (2008) A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim Acta 53:2238–2244

    Article  CAS  Google Scholar 

  • Yang X, Liu L, Wu M, Wang W, Bai X, Wang E (2011) Wet-chemistry-assisted nanotube-substitution reaction for high-efficiency and bulk-quantity synthesis of boron- and nitrogen-codoped single-walled carbon nanotubes. J Am Chem Soc 133:13216–13219

    Article  CAS  Google Scholar 

  • Yang C, Jin H, Cui C, Li J, Wang J, Amine K et al (2018) Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction. Nano Energy 54:192–199

    Article  CAS  Google Scholar 

  • Yang X, Xia D, Kang Y, Du H, Kang F, Gan L et al (2020) Unveiling the axial hydroxyl ligand on Fe-N4-C electrocatalysts and its impact on the pH-dependent oxygen reduction activities and poisoning kinetics. Advanced Science 7:2000176

    Article  CAS  Google Scholar 

  • Yin S-H, Yang J, Han Y, Li G, Wan L-Y, Chen Y-H et al (2020) Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew Chem Int Ed 59:21976–21979

    Article  CAS  Google Scholar 

  • Yu L, Deng D, Bao X (2020) Chain mail for catalysts. Angew Chem Int Ed 59:15294–15297

    Article  CAS  Google Scholar 

  • Yuan K, Sfaelou S, Qiu M, Lützenkirchen-Hecht D, Zhuang X, Chen Y et al (2018) Synergetic contribution of boron and Fe–Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett 3:252–260

    Article  CAS  Google Scholar 

  • Yuan K, Lützenkirchen-Hecht D, Li L, Shuai L, Li Y, Cao R et al (2020) Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination. J Am Chem Soc 142:2404–2412

    Article  CAS  Google Scholar 

  • Zeng H, Wang W, Li J, Luo J, Chen S (2018) In situ generated dual-template method for Fe/N/S Co-doped hierarchically porous honeycomb carbon for high-performance oxygen reduction. ACS Appl Mater Interfaces 10:8721–8729

    Article  CAS  Google Scholar 

  • Zhang J, Sun Y, Zhu J, Kou Z, Hu P, Liu L et al (2018) Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52:307–314

    Article  CAS  Google Scholar 

  • Zhang W, Mao K, Zeng XC (2019) B-doped MnN4-G nanosheets as bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions. ACS Sustainable Chemistry & Engineering 7:18711–18717

    Article  CAS  Google Scholar 

  • Zhang Q, Kumar P, Zhu X, Daiyan R, Bedford NM, Wu K-H et al (2021) Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv Energy Mater 11:2100303

    Article  CAS  Google Scholar 

  • Zhao S, Yang J, Han M, Wang X, Lin Y, Yang R, et al. (2020) Synergistically enhanced oxygen reduction electrocatalysis by atomically dispersed and nanoscaled Co species in three-dimensional mesoporous Co, N-codoped carbon nanosheets network. Applied Catalysis B: Environmental 260:118207

  • Zhou H, Yang T, Kou Z, Shen L, Zhao Y, Wang Z et al (2020) Negative pressure pyrolysis induced highly accessible single sites dispersed on 3D graphene frameworks for enhanced oxygen reduction. Angew Chem Int Ed 59:20465–20469

    Article  CAS  Google Scholar 

  • Zhou Y, Yu Y, Ma D, Foucher AC, Xiong L, Zhang J et al (2021) Atomic Fe dispersed hierarchical mesoporous Fe–N–C nanostructures for an efficient oxygen reduction reaction. ACS Catal 11:74–81

    Article  CAS  Google Scholar 

  • Zhu J, Xiao M, Song P, Fu J, Jin Z, Ma L et al (2018) Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy 49:23–30

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (Grant Number 91745112) and the Science and Technology Commission of Shanghai Municipality (21ZR1425000, 19DZ2271100).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xiaohan Sun, Xiaoguo Tie, Yurui Zhang, and Zhengwei Zhao. The first draft of the manuscript was written by Xiaohan Sun and all authors commented on previous versions of the manuscript. Qiaoxia Li, Yulin Min, and Qunjie Xu had responsibility for the design of the whole experiments, the results of discussion and analysis, and the submission of the journal. All authors read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3291 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Tie, X., Zhang, Y. et al. B, N-doped carbon nanosheets embedded with Co nanoparticles for enhanced oxygen reduction reaction. J Nanopart Res 24, 97 (2022). https://doi.org/10.1007/s11051-022-05409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05409-3

Keywords

Navigation