Skip to main content

Advertisement

Log in

pH-sensitive chitosan-PEG-decorated hollow mesoporous silica nanoparticles could be an effective treatment for acute myeloid leukemia (AML)

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Improved treatment of acute myeloid leukemia (AML) could be possible by longer retention of anticancer drugs in the bloodstream. In this study, it was aimed to obtain improved treatment against AML by providing prolonged blood levels of doxorubicin and ensuring endosomal escape by the proton sponge effect. With this aim, pH-sensitive and chitosan-poly ethylene glycol (Cs-PEG) coated doxorubicin-loaded hollow mesoporous silica nanoparticles (C-HMSN-DN) were prepared. Nanoparticles (NPs) were characterized by dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), X-Ray diffraction (XRD), and nitrogen adsorption–desorption isotherms. High doxorubicin encapsulation efficacy was obtained as 90%. pH-sensitive formulations were showed higher cellular uptake and found more effective against human leukemia cell line (HL60) than non-pH sensitive formulations. In vivo studies showed that Cs-PEG coating prolonged blood circulation time tremendously in comparison to unmodified nanoparticles and free doxorubicin. The designed drug delivery system (DDS) can be more effective by endosomal escape to eliminate myeloid cells which are granular cells containing a great number of lysosomes. In conclusion, we present a drug delivery system that provides a prolonged blood circulation time due to Cs-PEG coating and effective drug delivery via pH-sensitive drug release and endosomal escape for AML treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abumanhal-Masarweh H, Koren L, Zinger A, Yaari Z, Krinsky N, Kaneti G, Dahan N, Lupu-Haber Y, Suss-Toby E, Weiss-Messer E, Schlesinger-Laufer M, Shainsky-Roitman J, Schroeder A (2019) Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. J Control Release 296:1–13

    Article  CAS  Google Scholar 

  • Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22:4357–4362

    Article  CAS  Google Scholar 

  • Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218–4244

    Article  CAS  Google Scholar 

  • Cai D, Han C, Liu C, Ma X, Qian J, Zhou J, Li Y, Sun Y, Zhang C, Zhu W (2020) Chitosan-capped enzyme-responsive hollow mesoporous silica nanoplatforms for colon-specific drug delivery. Nanoscale Res Lett 15:123

    Article  CAS  Google Scholar 

  • Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J (2010) Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 4:529–539

    Article  CAS  Google Scholar 

  • Chen Y, Yang W, Chang B, Hu H, Fang X, Sha X (2013) In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Eur J Pharm Biopharm 85:406–412

    Article  CAS  Google Scholar 

  • Daeihamed M, Haeri A, Dadashzadeh S (2015) A simple and sensitive HPLC method for fluorescence quantitation of doxorubicin in micro-volume plasma: applications to pharmacokinetic studies in rats, Iran. J Pharm Res 14:33–42

    CAS  Google Scholar 

  • Daryasari MP, Akhgar MR, Mamashli F, Bigdeli B, Khoobi M (2016) Chitosan-folate coated mesoporous silica nanoparticles as a smart and pH-sensitive system for curcumin delivery. RSC Adv 6:105578–105588

    Article  CAS  Google Scholar 

  • Fang X, Chen C, Liu Z, Liu P, Zheng N (2011) A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 3:1632–1639

    Article  CAS  Google Scholar 

  • Fang X, Zhao X, Fang W, Chen C, Zheng N (2013) Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5:2205–2218

    Article  CAS  Google Scholar 

  • Feng W, Nie W, He C, Zhou X, Chen L, Qiu K, Wang W, Yin Z (2014) Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces 6:8447–8460

    Article  CAS  Google Scholar 

  • Fleischer CC, Payne CK (2014) Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res 47:2651–2659

    Article  CAS  Google Scholar 

  • Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5:9788–9798

    Article  CAS  Google Scholar 

  • García-Fernández A, Aznar E, Martínez-Máñez R, Sancenón F (2020) New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small 16:1902242

    Article  Google Scholar 

  • Glorani G, Marin R, Canton P, Pinto M, Conti G, Fracasso G, Riello P (2017) Pegylated silica nanoparticles: cytotoxicity and macrophage uptake. J Nanopart Res 19:294

    Article  Google Scholar 

  • Gunawan C, Lim M, Marquis CP, Amal R (2014) Nanoparticle-protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B 2:2060–2083

    Article  CAS  Google Scholar 

  • Han N, Zhao Q, Wan L, Wang Y, Gao Y, Wang P, Wang Z, Zhang J, Jiang T, Wang S (2015) Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS Appl Mater Interfaces 7:3342–3351

    Article  CAS  Google Scholar 

  • Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr CM (2013) Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7:1961–1973

    Article  CAS  Google Scholar 

  • Inocêncio S, Cordeiro T, Matos I, Danède F, Sotomayor JC, Fonseca IM, Correia NT, Corvo MC, Dionísio M (2021) Ibuprofen incorporated into unmodified and modified mesoporous silica: from matrix synthesis to drug release. Microporous Mesoporous Mater 310:110541

    Article  Google Scholar 

  • Kaasalainen M, Aseyev V, von Haartman E, Karaman DŞ, Mäkilä E, Tenhu H, Rosenholm J, Salonen J (2017) Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett 12:74

    Article  Google Scholar 

  • Kanwal U, Irfan Bukhari N, Ovais M, Abass N, Hussain K, Raza A (2018) Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target 26:296–310

    Article  CAS  Google Scholar 

  • Ke C-J, Su T-Y, Chen H-L, Liu H-L, Chiang W-L, Chu P-C, Xia Y, Sung H-W (2011) Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew Chem Int Ed 50:8086–8089

    Article  CAS  Google Scholar 

  • Krischke M, Hempel G, Völler S, André N, D’Incalci M, Bisogno G, Köpcke W, Borowski M, Herold R, Boddy AV, Boos J (2016) Pharmacokinetic and pharmacodynamic study of doxorubicin in children with cancer: results of a “European Pediatric Oncology Off-patents Medicines Consortium” trial. Cancer Chemother Pharmacol 78:1175–1184

    Article  CAS  Google Scholar 

  • Llopis-Lorente A, Lozano-Torres B, Bernardos A, Martínez-Máñez R, Sancenón F (2017) Mesoporous silica materials for controlled delivery based on enzymes. J Mater Chem B 5:3069–3083

    Article  CAS  Google Scholar 

  • Mekaru H, Lu J, Tamanoi F (2015) Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 95:40–49

    Article  CAS  Google Scholar 

  • Pisani C, Gaillard JC, Odorico M, Nyalosaso JL, Charnay C, Guari Y, Chopineau J, Devoisselle JM, Armengaud J, Prat O (2017) The timeline of corona formation around silica nanocarriers highlights the role of the protein interactome. Nanoscale 9:1840–1851

    Article  CAS  Google Scholar 

  • Popat A, Liu J, Lu GQ, Qiao SZ (2012) A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J Mater Chem 22:11173–11178

    Article  CAS  Google Scholar 

  • Radu DR, Lai C-Y, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    Article  CAS  Google Scholar 

  • Rawal M (2018) CHAPTER 2 Materials and chemistry of stimuli-responsive drug delivery systems, stimuli-responsive drug delivery systems. R Soc Chem 33–50

  • Robbins SL, Kumar V (2008) Robbins temel patoloji: (basic pathology), Nobel Tıp Kitabevi

  • Roca M, Haes AJ (2008) Silica−void−gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. J Am Chem Soc 130:14273–14279

    Article  CAS  Google Scholar 

  • Stewart BW, Wild C (2014) World cancer report 2014. International Agency for Research on Cancer, WHO Press, Lyon

    Google Scholar 

  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51

    Article  CAS  Google Scholar 

  • Sun Y-L, Yang B-J, Zhang SX-A, Yang Y-W (2012) Cucurbit [7] uril pseudorotaxane-based photoresponsive supramolecular nanovalve. Chem Eur J 18:9212–9216

    Article  CAS  Google Scholar 

  • Szegedi A, Popova M, Goshev I, Klébert S, Mihály J (2012) Controlled drug release on amine functionalized spherical MCM-41. J Solid State Chem 194:257–263

    Article  CAS  Google Scholar 

  • Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170

    Article  CAS  Google Scholar 

  • Teng Z, Su X, Zheng Y, Sun J, Chen G, Tian C, Wang J, Li H, Zhao Y, Lu G (2013) Mesoporous silica hollow spheres with ordered radial mesochannels by a spontaneous self-transformation approach. Chem Mater 98–105

  • Torchilin VP (2018) CHAPTER 1 Fundamentals of stimuli-responsive drug and gene delivery systems, stimuli-responsive drug delivery systems. R Soc Chem 1–32

  • Tuoriniemi J, Johnsson A-CJH, Holmberg JP, Gustafsson S, Gallego-Urrea JA, Olsson E, Pettersson JBC, Hassellöv M (2014) Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. Sci Technol Adv Mater 15:035009

    Article  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    Article  CAS  Google Scholar 

  • Wang Z, Zhang X, Huang G, Gao J (2018) CHAPTER 3 pH-responsive drug delivery systems, stimuli-responsive drug delivery systems. R Soc Chem 51–82

  • Xiong L, Du X, Kleitz F, Qiao SZ (2015) Cancer-cell-specific nuclear-targeted drug delivery by dual-ligand-modified mesoporous silica nanoparticles. Small 11:5919–5926

    Article  CAS  Google Scholar 

  • Xu P, Zuo H, Chen B, Wang R, Ahmed A, Hu Y, Ouyang J (2017) Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci Rep 7:42632

    Article  CAS  Google Scholar 

  • Yoo S, Lee J, Kim JM, Seong CY, Seong KD, Piao Y (2016) Well-dispersed sulfur wrapped in reduced graphene oxide nanoscroll as cathode material for lithium-sulfur battery. J Electroanal Chem 780:19–25

    Article  CAS  Google Scholar 

  • Zhao Q, Wang C, Liu Y, Wang J, Gao Y, Zhang X, Jiang T, Wang S (2014) PEGylated mesoporous silica as a redox-responsive drug delivery system for loading thiol-containing drugs. Int J Pharm 477:613–622

    Article  CAS  Google Scholar 

  • Zhu Y, Fang Y, Borchardt L, Kaskel S (2011) PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles. Microporous Mesoporous Mater 141:199–206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TEM, SEM, XRD, and BET analyses were performed in Middle East Technical University Central Laboratory. Special thanks to ILKO ARGEM for FTIR analysis. A part of this study was supported by Hacettepe University Coordinatorship of Scientific Research Projects with the project code THD-2016-12890. Special thanks to Prof. Fernandez-Megia and his team for giving Chitosan-PEG as a kind gift. Also, thanks to DEVA Holding A.S. for doxorubicin which was a kind gift from them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Capan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3890 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ultav, G., Tonbul, H., Tavukcuoglu, E. et al. pH-sensitive chitosan-PEG-decorated hollow mesoporous silica nanoparticles could be an effective treatment for acute myeloid leukemia (AML). J Nanopart Res 24, 40 (2022). https://doi.org/10.1007/s11051-022-05404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05404-8

Keywords

Navigation