Skip to main content
Log in

Growth behavior and electronic and optical properties of IrGen (n = 1–20) clusters

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

First principles calculations are performed to investigate the structural and electronic properties of small IrGen (n = 1–20) clusters. Cage-like configurations where the iridium atom is encapsulated inside a germanium cage are predicted to be favored for n ≥ 12. Doping Ir atom enhances the stability of the corresponding germanium frame. Our results highlight the great stability of IrGe13 which presents a high-symmetry cage-like geometry and a peculiar electronic structure in which the valence electrons of Ir and Ge atoms are delocalized and exhibit a shell structure. Absorption spectra, vertical ionization potentials, and electron affinities are also calculated and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams RD, Trufan E (2010) Iridium-germanium and –tin carbonyl complexes. Organometallics 29:4346–4353

    CAS  Google Scholar 

  • Allouche AR (2011) A graphical user interface for computational chemistry software. J Comput Chem 32:174–182

    CAS  Google Scholar 

  • Bals S, Van Aert S, Romero CP, Lauwaet K, Van Bael MJ, Schoeters B, Partoens B, Yücelen E, Lievens P, Van Tendeloo G (2012) Atomic scale dynamics of ultrasmall germanium clusters. Nat Commun 3:897

    CAS  Google Scholar 

  • Bandyopadhyay D (2012) Architectures, electronic structures, and stabilities of Cu-doped Gen clusters: density functional modelling. J Mol Model 18:3887–3902

    CAS  Google Scholar 

  • Bandyopadhyay D (2019) Electronic structure and stability of anionic AuGen (n = 1–20) clusters and assemblies: a density functional modelling. Struct Chem 30:955–963

    CAS  Google Scholar 

  • Bandyopadhyay D, Sen P (2010) Density functional investigation of structure and stability of Gen and GenNi (n = 1−20) clusters: validity of the electron counting rule. J Phys Chem A 114:1835–1842

    CAS  Google Scholar 

  • Calvo F (ed) (2020) Nanoalloys: from fundamentals to emergent applications, 2nd edn. Elsevier ISBN: 9780128223888

  • Deng X-J, Kong X-Y, Xu XL, Xu H-G, Zheng W-J (2014) Structural and magnetic properties of CoGen( n =2-11) clusters: photoelectron spectroscopy and density functional calculations. ChemPhysChem 15:3987–3993

    CAS  Google Scholar 

  • Deng X-J, Kong X-Y, Xu H-G, Xu X-L, Feng G, Zheng W-J (2015) Photoelectron spectroscopy and density functional calculations of VGen (n = 3–12) clusters. J Phys Chem C 119:11048–11055

    CAS  Google Scholar 

  • Frisch MJ et al (2013) Gaussian09, revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  • Gadiyak GV, Morokov YN, Mukhachev AG, Chernov SV (1982) Electron density functional method for molecular system calculations. J Struct Chem 22:670–674

    Google Scholar 

  • Hou X-J, Gopakumar G, Lievens P, Nguyen MT (2007) Chromium-doped germanium clusters CrGen (n = 1−5): geometry, electronic structure, and topology of chemical bonding. J Phys Chem A 111:13544–13553

    CAS  Google Scholar 

  • Jaiswal S, Kumar V (2016) Growth behavior and electronic structure of neutral and anion ZrGen (n = 1–21) clusters. Comput Theor Chem 1075:87–97

    CAS  Google Scholar 

  • Jin Y, Tian Y, Kuang X, Lu X, Cabellos JL, Mondal S, Merino G (2016) Structural and electronic properties of ruthenium-doped germanium clusters. J Phys Chem C 120:8399–8404

    CAS  Google Scholar 

  • Jing Q, Tian F, Wang Y (2008) No quenching of magnetic moment for the GenCo (n=1–13) clusters: first-principles calculations. J Chem Phys 128:124319

    Google Scholar 

  • Jules JL, Lombardi JR (2003) Transition metal dimer internuclear distances from measured force constants. J Phys Chem A 107:1268–1273

    CAS  Google Scholar 

  • Kapila N, Jindal VK, Sharma H (2011) Structural, electronic and magnetic properties of Mn, Co, Ni in Gen for (N=1–13). Phys B Condens Matter 406:4612–4619

    CAS  Google Scholar 

  • Kapila N, Garg I, Jindal VK, Sharma H (2012) First principles investigation into structural growth and magnetic properties in GenCr clusters for n=1–13. J Magn Magn Mater 324:2885–2893

    CAS  Google Scholar 

  • King R-B, Silaghi-Dumitrescu I, Uţǎ MM (2009) Endohedral nickel, palladium, and platinum atoms in 10-Vertex germanium clusters: competition between bicapped square antiprismatic and pentagonal prismatic structures. J Phys Chem A 113:527–533

    CAS  Google Scholar 

  • Kingcade JE, Nagarathna-Naik HM, Shim I, Gingerich KA (1986) Electronic structure and bonding of the molecule from all-electron ab initio calculations and equilibrium measurements. J Phys Chem 90:2830–2834

    CAS  Google Scholar 

  • Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428

    CAS  Google Scholar 

  • Kumar V, Kawazoe Y (2001a) Metal-encapsulated fullerenelike and cubic caged clusters of silicon. Phys Rev Lett 87:045503

    CAS  Google Scholar 

  • Kumar V, Kawazoe Y (2001b) Metal-encapsulated caged clusters of germanium with large gaps and different growth behavior than silicon. Phys Rev Lett 88:235504

    Google Scholar 

  • Kumar V, Kawazoe Y (2003) Metal-doped magic clusters of Si, Ge, and Sn: the finding of a magnetic superatom. Appl Phys Lett 83:2677–2679

    CAS  Google Scholar 

  • Kumar V, Kumar Singh A, Kawazoe Y (2004) Smallest magic caged clusters of Si, Ge, Sn, and Pb by encapsulation of transition metal atom. Nano Lett 4:677–681

    CAS  Google Scholar 

  • Kumar M, Bhattacharyya N, Bandyopadhyay D (2012) Architecture, electronic structure and stability of TM@Gen (TM = Ti, Zr and Hf; n = 1-20) clusters: a density functional modelling. J Mol Model 18:405–418

    CAS  Google Scholar 

  • Lasmi M, Mahtout S, Rabilloud F (2020) The effect of palladium and platinum doping on the structure, stability and optical properties of germanium clusters: DFT study of PdGen and PtGen (n=1-20) clusters. Comput Theor Chem 1181:112830

    CAS  Google Scholar 

  • Li B-X, Liang FS, Zhu Y, Xu J, Lai G (2005) Stable structures of neutral and ionic Gen (n=11–19) clusters. J Mol Struct THEOCHEM 756:19–24

    CAS  Google Scholar 

  • Li X, Su K, Yang X, Song L, Yang L (2013) Size-selective effects in the geometry and electronic property of bimetallic Au–Ge nanoclusters. Comput Theor Chem 1010:32–37

    CAS  Google Scholar 

  • Lu J, Nagase S (2003) Metal-doped germanium clusters MGen at the sizes of n=12 and 10: divergence of growth patterns from the MSin clusters. Chem Phys Lett 372:394–398

    CAS  Google Scholar 

  • Ma S, Wang G (2006) Structures of medium size germanium clusters. J Mol Struct THEOCHEM 767:75–79

    CAS  Google Scholar 

  • Mahtout S, Tariket Y (2016) Electronic and magnetic properties of CrGen (15≤n≤29) clusters: a DFT study. Chem Phys 472:270–277

    CAS  Google Scholar 

  • Mahtout S, Siouani C, Rabilloud F (2018) Growth behavior and electronic structure of noble metal-doped germanium clusters. J Phys Chem A 122:662–677

    CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    CAS  Google Scholar 

  • Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073

    CAS  Google Scholar 

  • Sattler KD (ed) (2017) Handbook of nanophysics clusters and fullerenes. CRC, Boca Raton ISBN: 978-0-12-819847-6

    Google Scholar 

  • Siouani C, Mahtout S, Safer S, Rabilloud F (2017) Structure, stability, and electronic and magnetic properties of VGen (n = 1–19) clusters. J Phys Chem A 121:3540–3554

    CAS  Google Scholar 

  • Siouani C, Mahtout S, Rabilloud F (2019) Structure, stability, and electronic properties of niobium-germanium and tantalum-germanium clusters. J Mol Model 25:113

    CAS  Google Scholar 

  • Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Cond Matter 14:2745–2779

    CAS  Google Scholar 

  • Sosa-Hernández EM, Alvarado-Leyva PG (2009) Magnetic properties of stable structures of small binary clusters. Physica E: Low-Dimens Syst Nanostruct 42:17–21

    Google Scholar 

  • Sporea C, Rabilloud F (2007) Stability of alkali-encapsulating silicon cage clusters. J Chem Phys 127:164306

    CAS  Google Scholar 

  • Srivichitranond LC, Seibel EM, Xie W, Sobczak Z, Klimczuk T, Cav RJ (2017) Superconductivity in a new intermetallic structure type based on endohedral Ta@Ir7Ge4 clusters. Phys Rev B 95:174521

    Google Scholar 

  • Szlawska M, Gribanov A, Gribanova S, Kaczorowski D (2018) Ferromagnetic Kondo lattice Ce2IrGe3. Intermetallics 93:106–112

    CAS  Google Scholar 

  • Tang C, Liu M, Zhu W, Deng K (2011) Probing the geometric, optical, and magnetic properties of 3d transition-metal endohedral Ge12M (M=Sc–Ni) clusters. Comput Theor Chem 969:56–60

    CAS  Google Scholar 

  • Trivedi R, Mishra V (2020) Exploring the structural stability order and electronic properties of transition metal M@Ge12 (M = Co, Pd, Tc, and Zr) doped germanium cage clusters - a density functional simulation (2021). J Mol Struct 1226:129371

    Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B: Condens Matter Mater Phys 43:1993–2006

    CAS  Google Scholar 

  • Wang J, Han J-G (2005) A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory. J Chem Phys 123:244303

    Google Scholar 

  • Wang J, Han J-G (2006a) A theoretical study on growth patterns of Ni-doped germanium clusters. J Phys Chem B 110:7820–7827

    CAS  Google Scholar 

  • Wang J, Han J-G (2006b) Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1−17). J Phys Chem A 110:12670–12677

    CAS  Google Scholar 

  • Wang J, Han J-G (2007) The growth behaviors of the Zn-doped different sized germanium clusters: a density functional investigation. Chem Phys 342:253–259

    CAS  Google Scholar 

  • Wang J, Han J-G (2008) Geometries, stabilities, and vibrational properties of bimetallic Mo2-doped Gen ( n = 9−15) clusters: a density functional investigation. J Phys Chem A 112:3224–3230

    CAS  Google Scholar 

  • Wang L, Zhao J (2008) Competition between supercluster and stuffed cage structures in medium-sized Gen (n=30–39) clusters. J Chem Phys 128:024302

    Google Scholar 

  • Zhao W-J, Wang Y-X (2008) Geometries, stabilities, and electronic properties of FeGen (n=9–16) clusters: density-functional theory investigations. Chem Phys 352:291–296

    CAS  Google Scholar 

  • Zhao W-J, Wang Y-X (2009) Geometries, stabilities, and magnetic properties of MnGen(n=2–16) clusters: density-functional theory investigations. J Mol Struct THEOCHEM 901:18–23

    CAS  Google Scholar 

  • Zhao L-Z, Lu W-C, Qin W, Zang Q-J, Wang C-Z, Ho K-M (2008) Fragmentation behavior of Gen clusters (2<n<33). Chem Phys Lett 455:225–231

    CAS  Google Scholar 

  • Zhao J, Du Q, Zhou S, Kumar V (2020) Endohedrally doped cage clusters. Chem Rev 120:9021–9163

    CAS  Google Scholar 

Download references

Acknowledgments

FR thanks the GENCI-IDRIS (Grant A0070807662) center for generous allocation of computational time.

Funding

This work was supported by the open research fund of the “General Direction of Research and Technological Development DGRSDT” of the “Ministry of Higher Education and Scientific Research”, Algeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sofiane Mahtout or Franck Rabilloud.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasmi, M., Mahtout, S. & Rabilloud, F. Growth behavior and electronic and optical properties of IrGen (n = 1–20) clusters. J Nanopart Res 23, 26 (2021). https://doi.org/10.1007/s11051-020-05124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05124-x

Keywords

Navigation