Skip to main content
Log in

Phase-control synthesis and catalytic property of nickel phosphide nanospheres

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this article, a mild hydrothermal route was developed to synthesize nickel phosphide nanostructures, using nickel chloride, sodium hypophosphite, and white phosphorus (WP) as reactants at 170 °C. The results indicated that the controllable phase of the prepared nickel phosphide nanostructures was highly dependent on the amount of sodium hypophosphite, WP, and reaction time. We also discovered that different phase nickel phosphide nanostructures have excellent catalytic properties for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in NaBH4. Simultaneously, similar aromatic nitro compounds 2-nitrophenol (2-NP) and 4-nitroaniline (4-NA) were further discussed. The experimental results demonstrated that the pure Ni2P phase has a better catalytic reduction of 4-NP than the pure Ni12P5 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abu II, Smith KJ (2007) HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts. Appl Catal A 328:58–67

    Article  CAS  Google Scholar 

  • Basu K, Paul S, Jana R, Datta A, Banerjee A (2019) Red-emitting copper nanoclusters: from bulk-scale synthesis to catalytic reduction. ACS Sustain Chem Eng 7:1998–2007

    Article  CAS  Google Scholar 

  • Brock SL, Perera SC, Stamm KL (2004) Chemical routes for production of transition-metal phosphides on the nanoscale: implications for advanced magnetic and catalytic materials. Chem Eur J 10:3364–3371

    Article  CAS  Google Scholar 

  • Deng YY, Zhou Y, Yao Y, Wang J (2013) Facile synthesis of nanosized nickel phosphides with controllable phase and morphology. New J Chem 37:4083–4088

    Article  CAS  Google Scholar 

  • Ehsan F, Nafiseh M (2019) Nanostructured nickel phosphide as an efficient photocatalyst: effect of phase on physical properties and dye degradation. Chem Phys Lett 730:478–484

    Article  Google Scholar 

  • Gu S, Du HF, Asiri AM, Sun XP, Li CM (2014) Three-dimensional interconnected network of nanoporous CoP nanowires as an efficient hydrogen evolution cathode. PCCP 16:16909–16913

    Article  CAS  Google Scholar 

  • Han A, Jin S, Chen HL, Ji HX, Sun ZJ, Du PW (2015) A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0-14. J Mater Chem A 3:1941–1946

    Article  CAS  Google Scholar 

  • Harish S, Mathiyarasu J, Phani KL, Yegnaraman V (2009) Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal Lett 128:197–202

    Article  CAS  Google Scholar 

  • Henkes AE, Vasquez Y, Schaak RE (2007) Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J Am Chem Soc 129:1896–1897

    Article  CAS  Google Scholar 

  • Ji L, Li L, Ji XQ, Zhang Y, Mou SY, Wu TW, Liu Q, Li BH, Zhu XJ, Luo YL, Shi XF, Asiri AM, Sun XP (2020) Highly selective electrochemical reduction of CO2 to alcohols on FeP nanoarray. Angew Chem Int Ed 59:758–762

    Article  CAS  Google Scholar 

  • Jiang P, Liu Q, Ge CJ, Cui W, Pu ZH, Asiribc AM, Sun XP (2014a) CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J Mater Chem A 2:14634–14640

    Article  CAS  Google Scholar 

  • Jiang P, Liu Q, Sun XP (2014b) NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 6:13440–13445

    Article  CAS  Google Scholar 

  • Lee J, Park JC, Song HA (2008) Nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater 20:1523–1528

    Article  CAS  Google Scholar 

  • Li HM, Lu SQ, Sun JY, Pei JJ, Liu D, Xue YR, Mao JJ, Zhu W, Zhuang ZB (2018) Phase-controlled synthesis of nickel phosphide nanocrystals and their electrocatalytic performance for the hydrogen evolution reaction. Chem Eur J 24:11748–11754

    Article  CAS  Google Scholar 

  • Lu Y, Tu JP, Xiong QQ, Qiao YQ, Zhang J, Gu CD, Wang XL, Mao SX (2012) Highly selective electrochemical reduction of CO2 to alcohols on FeP nanoarray. Chem Eur J 18:6031–6038

    Article  CAS  Google Scholar 

  • Lu DC, Ni YH, Wu H, Wang MF, Sheng EH (2016) Preparation and catalytic properties of porous CoP nanoflakes via a low-temperature phosphidation route. CrystEngComm 18:5580–5587

    Article  CAS  Google Scholar 

  • Lu DC, Yuan FF, Ni YH, Wan MF, Cheng XM (2018) Phase-control synthesis and catalytic property of magnetic Ni@NixPy core-shell microstructures. Mater Res Bull 101:215–222

    Article  CAS  Google Scholar 

  • Lukehart CM, Milne SB, Stock SR (1998) Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors. Chem Mater 10:903–908

    Article  CAS  Google Scholar 

  • Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216:343–352

    Article  CAS  Google Scholar 

  • Pan Y, Liu YR, Zhao JC, Yang K, Liang JL, Liu DD, Hu WH, Liu DP, Liu YQ, Liu CG (2015) Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A 3:1656–1665

    Article  CAS  Google Scholar 

  • Park J, Koo B, Yoon KY, Hwang Y, Kang M, Park JG, Hyeon T (2005) Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. J Am Chem Soc 127:8433–8440

    Article  CAS  Google Scholar 

  • Pu ZH, Liu Q, Tang C, Asiribc AM, Sun XP (2014) Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6:11031–11034

    Article  CAS  Google Scholar 

  • Sweeney CM, Stamm KL, Brock SL (2008) On the feasibility of phosphide generation from phosphate reduction: the case of Rh, Ir, and Ag. J. Alloys Compd 448:122–127

    Article  CAS  Google Scholar 

  • Tian JQ, Liu Q, Cheng NY, Asiri AM, Sun XP (2014) Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew Chem Int Ed 53:9577–9581

    Article  CAS  Google Scholar 

  • Tian FY, Hou DF, Zhang WM, Qiao XQ, Li DS (2017) Synthesis of a Ni2P/Ni12P5 bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique n–n heterojunction effects. Dalton Trans 46:14107–14113

    Article  CAS  Google Scholar 

  • Wang D, Kong LB, Liu MC, Zhang WB, Luo YC, Kang L (2015) Amorphous Ni-P materials for high performance pseudocapacitors. J. Power Sources 274:1107–1113

    Article  CAS  Google Scholar 

  • Wang F, Lei HK, Peng H, Zhou JZ, Zhao R, Liang J, Ma GF, Lei ZQ (2019) Interlaced nickel phosphide nanoflakes wrapped orthorhombic niobium pentoxide nanowires array for sustainable aqueous asymmetric supercapacitor. Electrochim Acta 325:134934–134943

    Article  CAS  Google Scholar 

  • Wei JD, Ni YH, Xiang NN, Zhang YX, Ma X (2014) Urchin-like NixPy hollow superstructures: mild solvothermal synthesis and enhanced catalytic performance for the reduction of 4-nitrophenol. CrystEngComm 16:2113–2118

    Article  CAS  Google Scholar 

  • Wu H, Ni YH, Wang MF, Lu DC (2016a) Shape-controlled synthesis and performance comparison of Ni2P nanostructures. CrystEngComm 18:5155–5163

    Article  CAS  Google Scholar 

  • Wu H, Ni YH, Hong F, Lu DC, Xiao YL (2016b) Grass-like Co2P superstructures: direct synthesis between elements, forming mechanism and catalytic properties. RSC Adv 6:5154–5160

    Article  CAS  Google Scholar 

  • Zhang T, Yang K, Wang C, Li SY, Zhang QQ, Chang XJ, Li JT, Li SM, Jia SF, Wang JB, Fu L (2018) Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis. Adv Energy Mater 8:1801690–1801696

    Article  Google Scholar 

  • Zhao Y, Zhao YP, Feng HS, Shen JY (2011) Synthesis of nickel phosphide nano-particles in a eutectic mixture for hydrotreating reactions. J Mater Chem 21:8137–8145

    Article  CAS  Google Scholar 

  • Zhu JL, He GQ, Shen PK (2015) A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation. J. Power Sources 275:279–283

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Anhui Provincial Project of Outstanding Young Talents Fund in Universities (No. gxyqZD2016342), Innovative Research Team of Anhui Provincial Education Department (No. 2016SCXPTTD), and Suzhou University professor research projects (No. 2017jb02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, T., Wang, H., Wu, H. et al. Phase-control synthesis and catalytic property of nickel phosphide nanospheres. J Nanopart Res 22, 237 (2020). https://doi.org/10.1007/s11051-020-04962-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04962-z

Keywords

Navigation