Skip to main content

Advertisement

Log in

Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Monolayer MoS2 has attracted much attention due to its catalytic performance in water splitting. However, the low electronic conductivity and limited number of active catalytic sites of monolayer MoS2 limit the hydrogen production efficiency. In this work, the effect of phosphorus doping on the electronic characteristics and catalytic activity of the hydrogen evolution reaction in monolayer MoS2 was studied using density functional theory. A semiconductor to conductor transformation occurs in monolayer MoS2(1-x)Px for x larger than 0.25. The Gibbs free energy is greatly reduced from 2.18 to 0.03 eV for the adsorption of hydrogen on monolayer MoS0.5P0.75. The Gibbs free energy for hydrogen atom adsorption on monolayer MoS0.5P0.75 is between 0.03 and 0.16 eV with hydrogen coverage θH = 1/12–7/12 ML. The Gibbs free energy is close to zero, indicating that phosphorus doping can trigger the basal plane active sites on monolayer MoS2; thus, this work provides a new design for the improvement of the catalytic activity of two-dimensional transition metal dichalcogenide-based catalysts by phosphorus doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An YR, Fan XL, Luo ZF, Lau WM (2017) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17:368–376

    Article  CAS  Google Scholar 

  • Ataca C, Şahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999

    Article  CAS  Google Scholar 

  • Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 4:3957–3971

    Article  CAS  Google Scholar 

  • Berland K, Hyldgaard P (2014) Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys Rev B 89:035412

    Article  Google Scholar 

  • Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2008) Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140:219

    Article  CAS  Google Scholar 

  • Çakır D, Peeters FM, Sevik C (2014) Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: a comparative study. Appl Phys Lett 104:203110

    Article  Google Scholar 

  • Capitani F, Höppner M, Joseph B, Malavasi L, Artioli GA, Baldassarre L, Perucchi A, Piccinini M, Lupi S, Dore P (2013) Combined experimental and computational study of the pressure dependence of the vibrational spectrum of solid picene C22H14. Phys Rev B 88:4745–4751

    Article  Google Scholar 

  • Chen X, Wang Z, Qiu Y, Zhang J, Liu G, Zheng W, Feng W, Cao W, Hu P, Hu W (2016) Controlled growth of vertical 3D MoS2(1-x)Se2x nanosheets for an efficient and stable hydrogen evolution reaction. J Mater Chem A 4:18060–18066

    Article  CAS  Google Scholar 

  • Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tenne R, Rao CN (2015) Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes. Dalton Trans 44:16399–16404

    Article  CAS  Google Scholar 

  • Chou SS, Sai N, Lu P, Coker EN, Liu S, Artyushkova K, Luk TS, Kaehr B, Brinker CJ (2015) Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat Commun 6:8311

    Article  CAS  Google Scholar 

  • Chu SQ, Park C, Shen GY (2016) Structural characteristic correlated to the electronic band gap in MoS2. Phys Rev B 94, 020101(R)

  • Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X (2015) Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci 8:1594–1601

    Article  CAS  Google Scholar 

  • Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

    Article  CAS  Google Scholar 

  • Finger LW (1985) Physical properties of crystals : their representation by tensors and matrices. Clarendon Press

  • Gao M-R, Liang J-X, Zheng Y-R, Xu Y-F, Jiang J, Gao Q, Li J, Yu S-H (2015) An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat Commun 6:6892

    Article  Google Scholar 

  • Gao DQ, Xia BR, Zhu CR, Du YH, Xi PX, Xue DS, Ding J, Wang J (2018) Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J Mater Chem A 6:510–515

    Article  CAS  Google Scholar 

  • Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  CAS  Google Scholar 

  • Guo Y, Zhang X, Zhang X, You T (2015) Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J Mater Chem A 3:15927–15934

    Article  CAS  Google Scholar 

  • Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  CAS  Google Scholar 

  • Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  CAS  Google Scholar 

  • Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335:698–702

    Article  CAS  Google Scholar 

  • Kasowski RV (1973) Band structure of MoS2 and NbS2. Phys Rev Lett 30:1175–1178

    Article  CAS  Google Scholar 

  • Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969

    Article  CAS  Google Scholar 

  • Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591

    Article  CAS  Google Scholar 

  • Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744

    Article  CAS  Google Scholar 

  • Li BB, Qiao SZ, Zheng XR, Yang XJ, Cui ZD, Zhu SL, Li ZY, Liang YQ (2015) Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J Power Sources 284:68–76

    Article  CAS  Google Scholar 

  • Lin SH, Kuo JL (2015) Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction. Phys Chem Chem Phys 17:29305–29310

    Article  CAS  Google Scholar 

  • Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277

    Article  CAS  Google Scholar 

  • Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010a) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  Google Scholar 

  • Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010b) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:474–479

    Article  Google Scholar 

  • Mi Q, Santori E, Lewis N (2010) Solar water splitting cells

  • Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104

    Article  Google Scholar 

  • Ouyang Y, Ling C, Chen Q, Wang Z, Shi L, Wang J (2016) Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem Mater 28:4390–4396

    Article  CAS  Google Scholar 

  • Pan H (2014) Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. Sci Rep 4:5348

    Article  CAS  Google Scholar 

  • Pan H (2016) Tension-enhanced hydrogen evolution reaction on vanadium disulfide monolayer. Nanoscale Res Lett 11:113

    Article  Google Scholar 

  • Pandey M, Vojvodic A, Thygesen KS, Jacobsen KW (2015) Two-dimensional metal dichalcogenides and oxides for hydrogen evolution: a computational screening approach. J Phys Chem Lett 6:1577–1585

    Article  CAS  Google Scholar 

  • Peng Q, De S (2013) Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Phys Chem Chem Phys 15:19427–19437

    Article  CAS  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  • Qi J, Li X, Qian X, Feng J (2013) Bandgap engineering of rippled MoS2 monolayer under external electric field. Appl Phys Lett 102:173112

    Article  Google Scholar 

  • Qian X, Liu J, Fu L, Li J (2014) Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346:1344–1347

    Article  CAS  Google Scholar 

  • Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  CAS  Google Scholar 

  • Ren X, Ma Q, Fan H, Pang L, Zhang Y, Yao Y, Ren X, Liu SF (2015) A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction. Chem Commun 51:15997–16000

    Article  CAS  Google Scholar 

  • Sabatier P (1913) La Catalyse en Chimie Organique, Librairie Polytechnique, Paris

  • Schmickler W, Trasatti S (2006) Comment on “Trends in the Exchange Current for Hydrogen Evolution” [J. Electrochem. Soc., 152, J23 (2005)]. J Electrochem Soc 153:L31

    Article  CAS  Google Scholar 

  • Segall MD, Shah R, Pickard CJ, Payne MC (1996) Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B 54:16317–16320

    Article  CAS  Google Scholar 

  • Seo B, Jung GY, Sa YJ, Jeong HY, Cheon JY, Lee JH, Kim HY, Kim JC, Shin HS, Kwak SK, Joo SH (2015) Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano 9:3728–3739

    Article  CAS  Google Scholar 

  • Shi W, Wang Z, Li Z, Fu YQ (2016) Electric field enhanced adsorption and diffusion of adatoms in MoS2 monolayer. Mater Chem Phys 183:392–397

    Article  CAS  Google Scholar 

  • Shuttleworth IG (2013) Investigation of the H–Cu and Cu–Cu bonds in hydrogenated Cu. J Phys Chem Solids 74:128–134

    Article  CAS  Google Scholar 

  • Shuttleworth IG (2015) Strategies for reducing basis set superposition error (BSSE) in O/AU and O/Ni. J Phys Chem Solids 86:19–26

    Article  CAS  Google Scholar 

  • Skulason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jonsson H, Norskov JK (2007) Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys Chem Chem Phys 9:3241–3250

    Article  CAS  Google Scholar 

  • Skúlason E, Tripkovic V, Björketun ME, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov JK (2010) Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J Phys Chem C 114:18182–18197

    Article  Google Scholar 

  • Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  • Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514

    Article  CAS  Google Scholar 

  • Ting LRL, Deng Y, Ma L, Zhang Y-J, Peterson AA, Yeo BS (2016) Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal 6:861–867

    Article  CAS  Google Scholar 

  • Topsakal M, Cahangirov S, Ciraci S (2010) The response of mechanical and electronic properties of graphane to the elastic strain. Appl Phys Lett 96:091912

    Article  Google Scholar 

  • Tsai C, Abild-Pedersen F, Norskov JK (2014a) Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett 14:1381–1387

    Article  CAS  Google Scholar 

  • Tsai C, Chan K, Abild-Pedersen F, Norskov JK (2014b) Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys 16:13156–13164

    Article  CAS  Google Scholar 

  • Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013a) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227

    Article  CAS  Google Scholar 

  • Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013b) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855

    Article  CAS  Google Scholar 

  • Wang H, Tsai C, Kong D, Chan K, Abild-Pedersen F, Nørskov JK, Cui Y (2015) Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 8:566–575

    Article  CAS  Google Scholar 

  • Wypych F, Schollhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc Chem Commun 1386–1388

  • Xiao W, Liu P, Zhang J, Song W, Feng YP, Gao D, Ding J (2017) Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv Energy Mater 7:1602086

    Article  Google Scholar 

  • Yorulmaz U, Ozden A, Perkgoz NK, Ay F, Sevik C (2016) Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology 27:335702

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

Funding

This study was funded by the National Natural Science Foundation of China (11474047) and the Fundamental Research Funds for the Central Universities (ZYGX2016J202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Wu, S. & Wang, Z. Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping. J Nanopart Res 20, 271 (2018). https://doi.org/10.1007/s11051-018-4379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4379-z

Keywords

Navigation