Skip to main content
Log in

Determining the equilibrium structures of nanoalloys by computational methods

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoalloys are bi- or multi-metallic nanoparticles with sizes in the range between 1 and 100 nm. They are the subject of intense research activity in the last decades, both in experiments and in theory/modelling. From a theoretical point of view, determining the equilibrium structure of nanoalloys at different temperatures is a quite complex task, which has stimulated the developments of specifically tailored methods and algorithms. Here, we review some recent developments in this field, considering first methods for the global optimization of nanoalloys, and then methods for studying their finite-temperature equilibrium properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbarzadeh H, Abbaspour M (2016) Investigation of melting and freezing of Ag-Au alloy nanoclusters supported on carbon nanotube using molecular dynamics simulations. J Mol Liq 216:671–682

    Article  Google Scholar 

  • Alloyeau D, Ricolleau C, Mottet C, Oikawa T, Langlois C, Le Bouar Y, Braidy N, Loiseau A (2009) Size and shape effects on the order-disorder phase transition in copt nanoparticles. Nat Mater 8:940–946

    Article  Google Scholar 

  • Alloyeau D, Mottet C, Ricolleau C (eds) (2012) Nanoalloys–synthesis, structure and properties. Springers, Berlin

    Google Scholar 

  • Asgari M, Behnejad H (2013) Molecular dynamics simulation of the melting process in Ag27Cu13 core-shell nanoalloy. Chem Phys 423:36–42

    Article  Google Scholar 

  • Aslan M, Davis JBA, Johnston RL (2016) Global optimization of small bimetallic pd-co binary nanoalloy clusters: a genetic algorithm approach at the DFT level. Phys Chem Chem Phys 18:6676–6682

    Article  Google Scholar 

  • Atanasov I, Ferrando R, Johnston RL (2014) Structure and solid solution properties of Cu-Ag nanoalloys. J Phys Condens Matter 26:235701

    Article  Google Scholar 

  • Barcaro G, Fortunelli A, Polak M, Rubinovich L (2011) Patchy multishell segregation in pd-pt alloy nanoparticles. Nano Lett 11:1766–1769

    Article  Google Scholar 

  • Barcaro G, Sementa L, Fortunelli A (2014) A grouping approach to homotop global optimization in alloy nanoparticles. Phys Chem Chem Phys 16:24256–24265

    Article  Google Scholar 

  • Berg BA (2003) Multicanonical simulations step by step. Comput Phys Commun 153(3):397–406

    Article  Google Scholar 

  • Bochicchio D, Ferrando R (2010) Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys. Nano Lett 10:4211–4216

    Article  Google Scholar 

  • Bochicchio D, Ferrando R (2012) Structure and thermal stability of AgCu chiral nanoparticles. Eur Phys J D 66:115

    Article  Google Scholar 

  • Bochicchio D, Ferrando R (2013) Morphological instability of core-shell metallic nanoparticles. Phys Rev B 87:165435

    Article  Google Scholar 

  • Bochicchio D, Ferrando R, Panizon E, Novakovic R, Rossi G (2014) Chemical ordering in magic-size Ag-Pd nanoparticles. Phys Chem Chem Phys 16:26478–26484

    Article  Google Scholar 

  • Bochicchio D, Ferrando R, Panizon E, Rossi G (2016) Structures and segregation patterns of Ag-Cu and Ag-Ni nanoalloys adsorbed on mgo(0 0 1). J Phys Condens Matter 28(6):064005

    Article  Google Scholar 

  • Bohra M, Grammatikopoulos P, Singh V, Zhao J, Toulkeridou E, Steinhauer S, Kioseoglou J, JFmc Bobo, Nordlund K, Djurabekova F, Sowwan M (2017) Tuning the onset of ferromagnetism in heterogeneous bimetallic nanoparticles by gas phase doping. Phys Rev Materials 1:066001

    Article  Google Scholar 

  • Bonventre D, Panizon E, Ferrando R (2018) Phase separation in AgCu and agni core–shell icosahedral nanoparticles: A harmonic thermodynamics study. Part Part Syst Charact 35:1700425

    Article  Google Scholar 

  • Calvo F (2008) Solid-solution precursor to melting in onion-ring Pd-Pt nanoclusters: a case of second-order-like phase change? Fadaray Discuss 138:75

    Article  Google Scholar 

  • Calvo F (ed) (2013) Nanoalloys from fundamentals to emergent applications. Elsevier, Amsterdam

    Google Scholar 

  • Calvo F, Wales D (2015) Harmonic superposition method for grand-canonical ensembles. Chem Phys Lett 623:17–21

    Article  Google Scholar 

  • Calvo F, Cottancin E, Broyer M (2008) Segregation, core alloying, and shape transitions in bimetallic nanoclusters: Monte carlo simulations. Phys Rev B 77:121406

    Article  Google Scholar 

  • Cerbelaud M, Barcaro G, Fortunelli A, Ferrando R (2012) Theoretical study of AuCu nanoalloys adsorbed on mgo(001). Surf Sci 606:938

    Article  Google Scholar 

  • Chantry RL, Atanasov I, Siriwatcharapiboon W, Khanal BP, Zubarev ER, Horswell SL, Johnston RL, Li ZY (2013) An atomistic view of the interfacial structures of aurh and aupd nanorods. Nanoscale 5(16):7452–7457

    Article  Google Scholar 

  • Cheng D, Huang S, Wang W (2006a) Thermal behavior of core-shell and three-shell layered clusters: Melting of \({\text {Cu}}_{1}{\text {Au}}_{54}\) and \({\text {cu}}_{12}{\text {Au}}_{43}\). Phys Rev B 74:064117

    Article  Google Scholar 

  • Cheng DJ, Wang WC, Huang SP (2006b) The onion-ring structure for pdpt bimetallic clusters. J Phys Chem B 110:16193–16196

    Article  Google Scholar 

  • Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) Theoretical study of cu-au nanoalloy clusters using a genetic algorithm. J Chem Phys 116:1536

    Article  Google Scholar 

  • Delfour L, Creuze J, Legrand B (2009) Exotic behavior of the outer shell of bimetallic nanoalloys. Phys Rev Lett 103:205701

    Article  Google Scholar 

  • Dieterich JM, Hartke B (2016) Error-safe, portable, and efficient evolutionary algorithms implementation with high scalability. J Chem Theory Comput 12(10):5226–5233

    Article  Google Scholar 

  • Doye JPK, Calvo F (2001) Entropic effects on the size dependence of cluster structure. Phys Rev Lett 86:3570–3573

    Article  Google Scholar 

  • Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3d computer graphics. Comput Mater Sci 2:279–286

    Article  Google Scholar 

  • Fan TE, Liu TD, Zheng JW, Shao GF, Wen YH (2016) Structure and stability of fe-pt bimetallic nanoparticles: Initial structure, composition and shape effects. J Alloys Compd 685:1008–1015

    Article  Google Scholar 

  • Fan TE, Demiroglu I, Hussein HA, Liu TD, Johnston RL (2017) DFT Study of the structure, chemical ordering and molecular adsorption of pd-ir nanoalloys. Phys Chem Chem Phys 19:27090–27098

    Article  Google Scholar 

  • Ferrando R (2015) Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles. J Phys Condens Matter 27:013003

    Article  Google Scholar 

  • Ferrando R (2016) Structure and properties of nanoalloys. frontiers of nanoscience, vol 10. Elsevier, Amsterdam

    Google Scholar 

  • Ferrando R, Fortunelli A, Johnston RL (2008a) Searching for the optimum structures of alloy nanoclusters. Phys Chem Chem Phys 10:640–649

    Article  Google Scholar 

  • Ferrando R, Jellinek J, Johnston RL (2008b) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev (Washington, DC) 108:845–910

    Article  Google Scholar 

  • Frenkel D, Smit B (2002) Understanding molecular simulation from algorithms to applications. Academic Press, Cambridge

    Google Scholar 

  • Goh JQ, Akola J, Ferrando R (2017) Geometric structure, chemical ordering and electronic properties of large AuCu clusters–a computational study. J Phys Chem C 121:10809–10816

    Article  Google Scholar 

  • Heard CJ, Johnston RL, Schön JC (2015) Energy landscape exploration of sub-nanometre copper-silver clusters. ChemPhysChem 15:1461–1469

    Article  Google Scholar 

  • Heiles S, Johnston RL (2013) Global optimization of clusters using electronic structure methods. Int J Quantum Chem 113:2091–2109

    Article  Google Scholar 

  • Heiles S, Logsdail AJ, Schafer R, Johnston RL (2012) Dopant-induced 2d-3d transition in small au-containing clusters: DFT-global optimisation of 8-atom au-ag nanoalloys. Nanoscale 4:1109–1115

    Article  Google Scholar 

  • Jellinek J, Krissinel EB (1996) Nina1m alloy clusters: analysis of structural forms and their energy ordering. Chem Phys Lett 258:283–292

    Article  Google Scholar 

  • Johnston RL (2003) Evolving better nanoparticles: genetic algorithms for optimising cluster geometries. Dalton Trans 2003:4193

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Theoretical surface science and catalysis—calculations and concepts. In: International conference on neural networks, 1995. Proceedings, IEEE

  • Kovács G, Kozlov SM, Neyman KM (2017) Versatile optimization of chemical ordering in bimetallic nanoparticles. J Phys Chem C 121(20):10803–10808

    Article  Google Scholar 

  • Kozlov SM, Kovács G, Ferrando R, Neyman KM (2015) How to determine accurate chemical ordering in several nanometer large bimetallic crystallites from electronic structure calculations. Chem Sci 6:3868–3880

    Article  Google Scholar 

  • Krissinel EB, Jellinek J (1997) 13-atom Ni-Al alloy clusters: structures and dynamics. Int J Quantum Chem 62:185–197

    Article  Google Scholar 

  • Kuntová Z, Rossi G, Ferrando R (2008) Melting of core-shell ag-ni and ag-co nanoclusters studied via molecular dynamics simulations. Phys Rev B 77:205431

    Article  Google Scholar 

  • Laasonen K, Panizon E, Bochicchio D, Ferrando R (2013) Competition between icosahedral motifs in AgCu, agni, and agco nanoalloys: a combined atomistic-dft study. J Phys Chem C 117:26405–26413

    Article  Google Scholar 

  • Lai X, Xu R, Huang W (2011) Geometry optimization of bimetallic clusters using an efficient heuristic method. J Chem Phys 135(16):164109

    Article  Google Scholar 

  • Lazauskas T, Sokol AA, Woodley SM (2017) An efficient genetic algorithm for structure prediction at the nanoscale. Nanoscale 9:3850–3864

    Article  Google Scholar 

  • Leary RH (2000) Global optimization on funneling landscapes. J Glob Optim 18(4):367–383

    Article  Google Scholar 

  • Lequien F, Creuze J, Berthier F, Legrand B (2006) Superficial segregation in nanoparticles: from facets to infinite surfaces. J Chem Phys 094707:125

    Google Scholar 

  • Lequien F, Creuze J, Berthier F, Braems I, Legrand B (2008) Superficial segregation, wetting, and dynamical equilibrium in bimetallic clusters: a monte carlo study. Phys Rev B 78:075414

    Article  Google Scholar 

  • Li Z, Scheraga HA (1987) Monte-carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84:6611–6615

    Article  Google Scholar 

  • Liao TW, Yadav A, Hu KJ, van der Tol J, Cosentino S, D’Acapito F, Palmer RE, Lenardi C, Ferrando R, Grandjean D, Lievens P (2018) Unravelling the nucleation mechanism of bimetallic nanoparticles with composition-tunable core-shell arrangement. Nanoscale 10:6684–6694

    Article  Google Scholar 

  • Lv J, Wang Y, Zhu L, Ma Y (2012) Particle-swarm structure prediction on clusters. J Chem Phys 137(8):084104

    Article  Google Scholar 

  • Lysgaard S, Myrdal JSG, Hansen HA, Vegge T (2015) A dft-based genetic algorithm search for AuCu nanoalloy electrocatalysts for co2 reduction. Phys Chem Chem Phys 17:28270–28276

    Article  Google Scholar 

  • Marques J, Pereira F (2010) An evolutionary algorithm for global minimum search of binary atomic clusters. Chem Phys Lett 485(1–3):211–216

    Article  Google Scholar 

  • Mottet C, Tréglia G, Legrand B (1997) New magic numbers in metallic clusters: an unexpected metal dependence. Surf Sci 383:L719–L727

    Article  Google Scholar 

  • Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nanoclusters. Phys Rev Lett 95:035501

    Article  Google Scholar 

  • Müller M, Albe K (2005) Lattice monte carlo simulations of fept nanoparticles: influence of size, composition, and surface segregation on order-disorder phenomena. Phys Rev B 72:094203

    Article  Google Scholar 

  • Negreiros FR, Barcaro G, Kuntová Z, Rossi G, Ferrando R, Fortunelli A (2011) Structures of AgPd nanoclusters adsorbed on mgo(100): a computational study. J Chem Phys 605:483–488

    Google Scholar 

  • Negreiros FR, Sementa L, Barcaro G, Vajda S, Aprà E, Fortunelli A (2012) Co oxidation by subnanometer AgxAu3−x supported clusters via density functional theory simulations. ACS Catal 2:1860–1864

    Article  Google Scholar 

  • Oderji HY, Behnejad H, Ferrando R, Ding H (2013) System-dependent melting behavior of icosahedral anti-mackay nanoalloys. RSC Adv 3:21981–21993

    Article  Google Scholar 

  • Paiva MAM, Peluzo BMTC, Belchior JC, Galvao BRL (2016) Structure and stability of neutral Al-Mg nanoclusters up to 55 atoms. Phys Chem Chem Phys 18:31579–31585

    Article  Google Scholar 

  • Palomares-Baez JP, Panizon E, Ferrando R (2017) Nanoscale effects on phase separation. Nano Lett 17(9):5394–5401

    Article  Google Scholar 

  • Panizon E, Ferrando R (2015) Solid-solid transitions in Pd-Pt nanoalloys. Phys Rev B 92:205417

    Article  Google Scholar 

  • Panizon E, Ferrando R (2016) Strain-induced restructuring of the surface in core@shell nanoalloys. Nanoscale 8:15911–15919

    Article  Google Scholar 

  • Polak M, Rubinovich L (2014) Stabilization and transformation of asymmetric configurations in small-mismatch alloy nanoparticles: the role of coordination dependent energetics. Phys Chem Chem Phys 16:1569–1575

    Article  Google Scholar 

  • Rambukwella M, Chang L, Ravishanker A, Fortunelli A, Stener M, Dass A (2018) Au36(seph)24 nanomolecules: synthesis, optical spectroscopy and theoretical analysis. Phys Chem Chem Phys 20:13255–13262

    Article  Google Scholar 

  • Rapallo A, Rossi G, Ferrando R, Fortunelli A, Curley BC, Lloyd LD, Tarbuck GM, Johnston RL (2005) Global optimization of bimetallic cluster structures. I. size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems. J Chem Phys 122:194308

    Article  Google Scholar 

  • Rapallo A, Olmos-Asar JA, Oviedo OA, Luduena M, Ferrando R, Mariscal MM (2012) Thermal properties of Co/Au nanoalloys and comparison of different computer simulation techniques. J Phys Chem C 116:17210–17218

    Article  Google Scholar 

  • Rondina GG, Da Silva JLF (2013) Revised basin-hopping monte carlo algorithm for structure optimization of clusters and nanoparticles. J Chem Inf Model 53:2282–2298

    Article  Google Scholar 

  • Rossi G, Ferrando R (2006) Global optimization by excitable walkers. Chem Phys Lett 423:17–22

    Article  Google Scholar 

  • Rossi G, Ferrando R (2007) Freezing of gold nanoclusters into poly-decahedral structures. Nanotechnology 18:225706

    Article  Google Scholar 

  • Rossi G, Ferrando R (2009) Searching for low-energy structures of nanoparticles: a comparison of different methods and algorithms. J Phys Cond Mat 21:084208

    Article  Google Scholar 

  • Rossi G, Ferrando R (2017) Combining shape-changing with exchange moves in the optimization of nanoalloys. Comput Theor Chem 1107:66–73

    Article  Google Scholar 

  • Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Magic polyicosahedral core-shell clusters. Phys Rev Lett 93:105503

    Article  Google Scholar 

  • Rossi G, Ferrando R, Rapallo A, Fortunelli A, Curley BC, Lloyd LD, Johnston RL (2005) Global optimization of bimetallic cluster structures. I. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems. J Chem Phys 122:194309

    Article  Google Scholar 

  • Rossi G, Ferrando R, Mottet C (2008) Structure and chemical ordering in CoPt nanoalloys. Faraday Discuss 138:193

    Article  Google Scholar 

  • Rubinovich L, Haftel MI, Bernstein N, Polak M (2006) Compositional structures and thermodynamic properties of Pd-Cu, Rh-Pd, and Rh-Pd-Cu nanoclusters computed by a combined free-energy concentration expansion method and tight-binding approach. Phys Rev B 74:035405

    Article  Google Scholar 

  • Schebarchov D, Wales DJ (2013) Communication: a new paradigm for structure prediction in multicomponent systems. J Chem Phys 139:221101

    Article  Google Scholar 

  • Schebarchov D, Wales DJ (2014) Structure prediction for multicomponent materials using biminima. Phys Rev Lett 113:156102

    Article  Google Scholar 

  • Schebarchov D, Wales DJ (2015) Quasi-combinatorial energy landscapes for nanoalloy structure optimisation. Phys Chem Chem Phys 17:28331–28338

    Article  Google Scholar 

  • Shao GF, Wang TN, Liu TD, Chen JR, Zheng JW, Wen YH (2015) Structural optimization of Pt-Pd alloy nanoparticles using an improved discrete particle swarm optimization algorithm. Comput Phys Commun 186:11–18

    Article  Google Scholar 

  • Shao GF, Zhu M, Shangguan YL, Li WR, Zhang C, Wang WW, Li L (2017) Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method. Chin Phys B 26:063601

    Article  Google Scholar 

  • Shayeghi A, Goetz D, Davis JBA, Schafer R, Johnston RL (2015) Pool-bcga: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. Phys Chem Chem Phys 17:2104–2112

    Article  Google Scholar 

  • Shukla R, Ray D, Sarkar K, Kumar Dixit M, Prasad Bhattacharyya S (2017) Flying onto global minima on potential energy surfaces: a swarm intelligence guided route to molecular electronic structure. Int J Quantum Chem 117(5):e25328–n/a

    Article  Google Scholar 

  • Stillinger FH (1999) Exponential multiplicity of inherent structures. Phys Rev E 59:48

    Article  Google Scholar 

  • Stillinger FH, Weber TA (1982) Hidden structure in liquids. Phys Rev A 25:978

    Article  Google Scholar 

  • Stillinger FH, Weber TA (1984) Packing structures and transitions in liquids and solids. Science 225:983–989

    Article  Google Scholar 

  • Taherkhani F, Akbarzadeh H, Rezania H (2014) Chemical ordering effect on melting temperature, surface energy of copper-gold bimetallic nanocluster. J Alloys Compd 617:746–750

    Article  Google Scholar 

  • Trebst S, Huse DA, Troyer M (2004) Optimizing the ensemble for equilibration in broad-histogram monte carlo simulations. Phys Rev E 70:046701

    Article  Google Scholar 

  • Wales DJ (2003) Energy landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116

    Article  Google Scholar 

  • Wang LL, Tan TL, Johnson DD (2014) Configurational thermodynamics of alloyed nanoparticles with adsorbates. Nano Lett 14(12):7077–7084

    Article  Google Scholar 

  • Wang Y, Hou M (2012) Ordering of bimetallic nanoalloys predicted from bulk alloy phase diagrams. J Phys Chem C 116:10814

    Article  Google Scholar 

  • Wolfbeisser A, Kovács G, Kozlov SM, Föttinger K, Bernardi J, Klötzer B, Neyman KM, Rupprechter G (2017) Surface composition changes of CuNi-ZrO2 during methane decomposition: an operando NAP-XPS and density functional study. Catal Today 283:134–143

    Article  Google Scholar 

  • Yang Y, Zhao Z, Cui R, Wu H, Cheng D (2015) Structures, thermal stability, and chemical activity of crown-jewel-structured Pd-Pt nanoalloys. J Phys Chem C 119(20):10888–10895

    Article  Google Scholar 

  • Zanvettor C, Marques J (2014) On the lowest-energy structure of binary Zn-Cd nanoparticles: size and composition. Chem Phys Lett 608:373–379

    Article  Google Scholar 

  • Zhao J, Shi R, Sai L, Huang X, Su Y (2016) Comprehensive genetic algorithm for ab initio global optimisation of clusters. Mol Simul 42(10):809–819

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Ferrando.

Ethics declarations

Conflict of interests

The author declares that they have no conflict of interest

Additional information

This article is part of the topical collection: 20th Anniversary Issue: From the editors

Nicola Pinna, Executive Editor, Mike Roco, Editor-in-Chief

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrando, R. Determining the equilibrium structures of nanoalloys by computational methods. J Nanopart Res 20, 179 (2018). https://doi.org/10.1007/s11051-018-4267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4267-6

Keywords

Navigation