Skip to main content
Log in

Preparation and characterization of mesoporous TiO2-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mesoporous TiO2-sphere-supported Au-nanoparticles (Au/m-TiO2-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO2 precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200–400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2–6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO2 spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO2-spheres was as high as 117 m2 g−1. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm−1 that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO2-spheres could convert CO completely into CO2 at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arrii S, Morfin F, Renouprez AJ, Rousset JL (2004) Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. J Am Chem Soc 126(4):1199–1205. doi:10.1021/ja036352y

    Article  Google Scholar 

  • Cai J, Wu X, Li S, Zheng F, Zhu L, Lai Z (2015) Synergistic effect of double-shelled and sandwiched TiO2@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity. ACS Appl Mater Interfaces 7(6):3764–3772. doi:10.1021/am508554t

    Article  Google Scholar 

  • Chen D, Cao L, Huang F, Imperia P, Cheng Y, Caruso RA (2010a) Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J Am Chem Soc 132(12):4438–4444. doi:10.1021/ja100040p

    Article  Google Scholar 

  • Chen J, Hua Z, Yan Y, Zakhidov AA, Baughman RH, Xu L (2010b) Template synthesis of ordered arrays of mesoporous titania spheres. Chem Commun 46(11):1872–1874. doi:10.1039/b915706a

    Article  Google Scholar 

  • Chen Y, Deng Y, Pu Y, Tang B, Su Y, Tang J (2016) One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity. Mater Sci Eng C 65:27–32. doi:10.1016/j.msec.2016.04.028

    Article  Google Scholar 

  • Denkwitz Y, Makosch M, Geserick J, Hörmann U, Selve S, Kaiser U, Hüsing N, Behm RJ (2009) Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts. Appl Catal B 91(1–2):470–480. doi:10.1016/j.apcatb.2009.06.016

    Article  Google Scholar 

  • Ding S, Yin X, Lü X, Wang Y, Huang F, Wan D (2012) One-step high-temperature solvothermal synthesis of TiO2/sulfide nanocomposite spheres and their solar visible-light applications. ACS Appl Mater Interfaces 4(1):306–311. doi:10.1021/am201343q

    Article  Google Scholar 

  • Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938. doi:10.1126/science.1085721

    Article  Google Scholar 

  • Gaur S, Wu H, Stanley GG, More K, Kumar CS, Spivey JJ (2013) CO oxidation studies over cluster-derived Au/TiO2 and AUROlite™ Au/TiO2 catalysts using DRIFTS. Catal Today 208:72–81. doi:10.1016/j.cattod.2012.10.029

    Article  Google Scholar 

  • Haruta M, Daté M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A 222(1–2):427–437. doi:10.1016/S0926-860X(01)00847-X

    Article  Google Scholar 

  • Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321(5894):1331–1335. doi:10.1126/science.1159639

    Article  Google Scholar 

  • Hutchings GJ, Hall MS, Carley AF, Landon P, Solsona BE, Kiely CJ, Herzing A, Makkee M, Moulijn JA, Overweg A, Fierro-Gonzalez JC, Guzman J, Gates BC (2006) Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J Catal 242(1):71–81. doi:10.1016/j.jcat.2006.06.001

    Article  Google Scholar 

  • Idakiev V, Dimitrov D, Tabakova T, Ivanov K, Yuan Z, Su B (2015) Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chin J Catal 36(4):579–587. doi:10.1016/S1872-2067(14)60283-7

    Article  Google Scholar 

  • Li S, Zhu H, Qin Z, Wang G, Zhang Y, Wu Z, Li Z, Chen G, Dong W, Wu Z, Zheng L, Zhang J, Hu T, Wang J (2014) Morphologic effects of nano CeO2–TiO2 on the performance of Au/CeO2–TiO2 catalysts in low-temperature CO oxidation. Appl Catal B 144:498–506. doi:10.1016/j.apcatb.2013.07.049

    Article  Google Scholar 

  • Liu B, Liu L, Lang X, Wang H, Lou X, Aydil ES (2014) Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ Sci 7(8):2592–2597. doi:10.1039/c4ee00472h

    Article  Google Scholar 

  • Liu C, Tan Y, Lin S, Li H, Wu X, Li L, Pei Y, Zeng X (2013) CO self-promoting oxidation on nanosized gold clusters: triangular Au3 active site and CO induced O–O scission. J Am Chem Soc 135(7):2583–2595. doi:10.1021/ja309460v

    Article  Google Scholar 

  • Li X, Zhu Z, Zhao Q, Liu S (2011) FT-IR study of the photocatalytic degradation of gaseous toluene over UV-irradiated TiO2 microballs: enhanced performance by hydrothermal treatment in alkaline solution. Appl Surf Sci 257(10):4709–4714. doi:10.1016/j.apsusc.2010.12.133

    Article  Google Scholar 

  • Lv Q, Meng M, Zha Y (2006) Preparation and characterization of nano-structured Au/TiO2 catalyst with high thermal stability. Chin J Catal 27(12):1111–1116

    Article  Google Scholar 

  • Ma Z, Dai S (2011) Design of novel structured gold nanocatalysts. ACS Catal 1(7):805–818. doi:10.1021/cs200100w

    Article  Google Scholar 

  • Qi C, Su H, Guan R, Xu X (2012) An investigation into phosphate-doped Au/alumina for low temperature CO oxidation. J Phys Chem C 116(33):17492–17500. doi:10.1021/jp301807j

    Article  Google Scholar 

  • Rico-Oller B, Boudjemaa A, Bahruji H, Kebir M, Prashar S, Bachari K, Fajardo M, Gómez-Ruiz S (2016) Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles. Sci Total Environ 563–564:921–932. doi:10.1016/j.scitotenv.2015.10.101

    Article  Google Scholar 

  • Schubert G, Gazsi A, Solymosi F (2014) Photocatalytic decomposition and oxidation of dimethyl ether over Au/TiO2. J Catal 313:127–134. doi:10.1016/j.jcat.2014.03.005

    Article  Google Scholar 

  • Shi Y, Hu X, Zhao J, Zhou X, Zhu B, Zhang S, Huang W (2015) CO oxidation over Cu2O deposited on 2D continuous lamellar g-C3N4. New J Chem 39(8):6642–6648. doi:10.1039/c5nj00621j

    Article  Google Scholar 

  • Trang NTH, Ali Z, Kang DJ (2015) Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries. ACS Appl Mater Interfaces 7(6):3676–3683. doi:10.1021/am508158v

    Google Scholar 

  • Wang G, Wang X, Liu J, Sun X (2012) Mesoporous Au/TiO2 nanocomposite microspheres for visible-light photocatalysis. Chem Eur J 18(17):5361–5366. doi:10.1002/chem.201101410

    Article  Google Scholar 

  • Wang L, Wang H, Rice AE, Zhang W, Li X, Chen M, Meng X, Lewis JP, Xiao F (2015) Design and preparation of supported Au catalyst with enhanced catalytic activities by rationally positioning Au nanoparticles on anatase. J Phys Chem Lett 6(12):2345–2349. doi:10.1021/acs.jpclett.5b00655

    Article  Google Scholar 

  • Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C (2010) Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta 55(24):721–7218. doi:10.1016/j.electacta.2010.07.030

    Google Scholar 

  • Yamada Y, Mizutani M, Nakamura T, Yano K (2010) Mesoporous microcapsules with decorated inner surface: fabrication and photocatalytic activity. Chem Mater 22(5):1695–1703. doi:10.1021/cm9031072

    Article  Google Scholar 

  • Yang K, Huang K, He Z, Chen X, Fu X, Dai W (2014) Promoted effect of PANI as electron transfer promoter on CO oxidation over Au/TiO2. Appl Catal B 158–159:250–257. doi:10.1016/j.apcatb.2014.04.028

    Google Scholar 

  • Yao Q, Wang C, Wang H, Yan H, Lu J (2016) Revisiting the Au particle size effect on TiO2-coated Au/TiO2 catalysts in CO oxidation reaction. J Phys Chem C 120(17):9174–9183. doi:10.1021/acs.jpcc.5b12712

    Article  Google Scholar 

  • Yoshitake H, Saito N (2013) Selective hydrogenation of crotonaldehyde on Au supported on mesoporous titania. Microporous and Mesoporous Mater 168:51–56. doi:10.1016/j.micromeso.2012.09.031

    Article  Google Scholar 

  • Zhang P, Guo J, Zhao P, Zhu B, Huang W, Zhang S (2015) Promoting effects of lanthanum on the catalytic activity of Au/TiO2 nanotubes for CO oxidation. RSC Adv 5(16):11989–11995. doi:10.1039/c4ra14133d

    Article  Google Scholar 

  • Zhang Z, Zhou Y, Zhang Y, Xiang S, Zhou S, Sheng X (2014) Encapsulation of Au nanoparticles with well crystallized anatase TiO2 mesoporous hollow spheres for increased thermal stability. RSC Adv 4(14):7313–7320. doi:10.1039/c3ra47535b

    Article  Google Scholar 

  • Zhou L, Chen M, Wang Y, Su Y, Yang X, Chen C, Xu J (2014a) Au/mesoporous-TiO2 as catalyst for the oxidation of alcohols to carboxylic acids with molecular oxygen in water. Appl Catal A 475:347–354. doi:10.1016/j.apcata.2014.01.042

    Article  Google Scholar 

  • Zhou N, He B, Wang X, Hu Z (2014b) Preparation and characterization of Au@TiO2 core–shell hollow nanoparticles with CO oxidation performance. J Nanopart Res 16:2676. doi:10.1007/s11051-014-2676-8

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21373120, 21301098, 21071086, and 21271110), MOE Innovation Team (IRT13022) of China, and the Applied Basic Research Programs of Science and Technology Commission Foundation of Tianjin (13JCQNJC02000 and 12JCYBJC13100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Huang, S., Zhu, B. et al. Preparation and characterization of mesoporous TiO2-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature. J Nanopart Res 18, 323 (2016). https://doi.org/10.1007/s11051-016-3620-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3620-x

Keyword

Navigation