Skip to main content
Log in

Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In recent years, a lot of metal oxides with high theoretical capacity have widely investigated as the high-performance anode materials for lithium-ion batteries (LIBs). In this work, a simple, facile and effective one-pot hydrothermal strategy toward ternary SnO2–TiO2@graphene composite has been developed by using SnCl2 and TiOSO4 as the starting materials. The obtained composite demonstrates a unique structure and high surface areas, in which both SnO2 and TiO2 nanoparticles are well grown on the surface of graphene. More interestingly, the SnO2 and TiO2 nanoparticles are intergrowth together, totally different with the traditional ternary hybrids. When used as anode material for LIBs, the introduction of TiO2 plays a crucial role in maintaining the structural stability of the electrode during Li+ insertion/extraction, which can effectively prevent the aggregation of SnO2 nanoparticles. The electrochemical tests indicate that as-prepared SnO2–TiO2@graphene composite exhibits a high capacity of 1276 mA h g−1 after 200 cycles at the current density of 200 mA g−1. Furthermore, the composite also maintains the specific capacity of 611 mA h g−1 at an ultrahigh current density of 2000 mA g−1, which is superior to those of the reported SnO2 and SnO2/graphene hybrids. Accordingly, the remarkable electrochemical performance of ternary SnO2–TiO2@graphene composites is mainly attributed to their unique nanostructure, high surface areas, and the synergistic effect not only between graphene and metal oxides but also between the intergrown SnO2 and TiO2 nanoparticles.

Graphical abstract

Intergrown SnO2 and TiO2 nanoparticles have been successfully anchored onto the graphene nanosheets as high-performance lithium-ion battery anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  • Cai D, Yang T, Liu B, Wang D, Liu Y, Wang L, Li Q, Wang T (2014) A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J Mater Chem A 2:13990–13995

    Article  Google Scholar 

  • Chang SY, Chen SF, Huang YC (2011) Synthesis, structural correlations, and photocatalytic properties of TiO2 nanotube/SnO2−Pd nanoparticle heterostructures. J Phys Chem C 115:1600–1607

    Article  Google Scholar 

  • Chen J, Yang L, Zhang Z, Fang S, Si Hirano (2013) Mesoporous TiO–Sn@ C core–shell microspheres for Li-ion batteries. Chem Commun 49:2792–2794

    Article  Google Scholar 

  • Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229

    Article  Google Scholar 

  • Gao R, Zhang H, Yuan S, Shi L, Wu M, Jiao Z (2016) Controllable synthesis of rod-like SnO2 nanoparticles with tunable length anchored onto graphene nanosheets for improved lithium storage capability. RSC Adv 6:4116–4127

    Article  Google Scholar 

  • Han X, Jin M, Xie S, Kuang Q, Jiang Z, Jiang Y, Xie Z, Zheng L (2009) Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew Chem Int Ed 121:9344–9347

    Article  Google Scholar 

  • Han S, Jiang J, Huang Y, Tang Y, Cao J, Wu D, Feng X (2015) Hierarchical TiO2–SnO2–graphene aerogels for enhanced lithium storage. Phys Chem Chem Phys 17:1580–1584

    Article  Google Scholar 

  • Ji G, Ding B, Sha Z, Wu J, Ma Y, Lee JY (2013) Conformal graphene encapsulation of tin oxide nanoparticle aggregates for improved performance in reversible Li+ storage. Nanoscale 5:5965–5972

    Article  Google Scholar 

  • Jiang B, Tian C, Zhou W, Wang J, Xie Y, Pan Q, Ren Z, Dong Y, Fu D, Han J (2011) In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2–graphene with enhanced photocatalytic activity. Chem Eur J 17:8379–8387

    Article  Google Scholar 

  • Jiang X, Yang X, Zhu Y, Fan K, Zhao P, Li C (2013) Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. New J Chem 37:3671–3678

    Article  Google Scholar 

  • Jiang X, Yang X, Zhu Y, Yao Y, Zhao P, Li C (2015) Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J Mater Chem A 3:2361–2369

    Article  Google Scholar 

  • Kumar V, Govind A, Nagarajan R (2011) Optical and photocatalytic properties of heavily F-doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem 50:5637–5645

    Article  Google Scholar 

  • Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593

    Article  Google Scholar 

  • Li S, Wang Y, Lai C, Qiu J, Ling M, Martens W, Zhao H, Zhang S (2014a) Directional synthesis of tin oxide@ graphene nanocomposites via a one-step up-scalable wet-mechanochemical route for lithium ion batteries. J Mater Chem A 2:10211–10217

    Article  Google Scholar 

  • Li X, Zhang Y, Li T, Zhong Q, Li H, Huang J (2014b) Carbon encapsulated ultrasmall SnO2 nanoparticles anchoring on graphene/TiO2 nanoscrolls for lithium storage. Electrochim Acta 147:40–46

    Article  Google Scholar 

  • Li L, Guan B, Zhang L, Su Z, Xie H, Wang C (2015a) Controlled synthesis of mesoporous hollow SnO2 nanococoons with enhanced lithium storage capability. J Mater Chem A 3:22021–22025

    Article  Google Scholar 

  • Li S, Ling M, Qiu J, Han J, Zhang S (2015b) Anchoring ultra-fine TiO2–SnO2 solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries. J Mater Chem A 3:9700–9706

    Article  Google Scholar 

  • Lian P, Liang S, Zhu X, Yang W, Wang H (2011) A novel Fe3O4–SnO2–graphene ternary nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 58:81–88

    Article  Google Scholar 

  • Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour JM (2013) Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7:6001–6006

    Article  Google Scholar 

  • Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47:1384–1404

    Article  Google Scholar 

  • Liu L, Fan Q, Sun C, Gu X, Li H, Gao F, Chen Y, Dong L (2013) Synthesis of sandwich-like TiO2@ C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J Power Sources 221:141–148

    Article  Google Scholar 

  • Ma J, Manthiram A (2012) Precursor-directed formation of hollow Co3O4 nanospheres exhibiting superior lithium storage properties. RSC Adv 2:3187–3189

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • Park H, Song T, Han H, Devadoss A, Yuh J, Choi C, Paik U (2012) SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries. Electrochem Commun 22:81–84

    Article  Google Scholar 

  • Qiu J, Li S, Gray E, Liu H, Gu Q-F, Sun C, Lai C, Zhao H, Zhang S (2014) Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C 118:8824–8830

    Article  Google Scholar 

  • Ren Y, Zhang J, Liu Y, Li H, Wei H, Li B, Wang X (2012) Synthesis and superior anode performances of TiO2–carbon–rGO composites in lithium-ion batteries. ACS Appl Mater Interfaces 4:4776–4780

    Article  Google Scholar 

  • Shi Y, Guo B, Corr SA, Shi Q, Hu YS, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9:4215–4220

    Article  Google Scholar 

  • Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  • Tang Y, Wu D, Chen S, Zhang F, Jia J, Feng X (2013) Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ Sci 6:2447–2451

    Article  Google Scholar 

  • Tian Q, Zhang Z, Yang L, Si Hirano (2014) Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries. J Power Sources 253:9–16

    Article  Google Scholar 

  • Wang S, Zhang J, Chen C (2010) Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. J Power Sources 195:5379–5381

    Article  Google Scholar 

  • Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham TK, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906

    Article  Google Scholar 

  • Wu HB, Chen JS, Lou XW, Hng HH (2011) Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties. J Phys Chem C 115:24605–24610

    Article  Google Scholar 

  • Wu L, Bresser D, Buchholz D, Passerini S (2015) Nanocrystalline TiO2 (B) as anode material for sodium-ion batteries. J Electrochem Soc 162:A3052–A3058

    Article  Google Scholar 

  • Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  Google Scholar 

  • Yang S, Yue W, Zhu J, Ren Y, Yang X (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23(28):3570–3576

    Article  Google Scholar 

  • Zhang H, Tao H, Jiang Y, Jiao Z, Minghong Wu, Zhao B (2010a) Ordered nanostructure CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J Power Sources 195:2950–2955

    Article  Google Scholar 

  • Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010b) Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J Mater Chem 20:5462–5467

    Article  Google Scholar 

  • Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011a) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res 4:274–283

    Article  Google Scholar 

  • Zhang J, Xiong Z, Zhao XS (2011b) Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640

    Article  Google Scholar 

  • Zhang H, Xu P, Ni Y, Geng H, Zheng G, Dong B, Jiao Z (2014) In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries. J Mater Res 29:617–624

    Article  Google Scholar 

  • Zhang Y, Pu X, Yang Y, Zhu Y, Hou H, Jing M, Yang X, Chen J, Ji X (2015) An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. Phys Chem Chem Phys 17:15764–15770

    Article  Google Scholar 

  • Zhao B, Jiang Y, Zhang H, Tao H, Zhong M (2009) Jiao Z (2009) Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J Power Sources 189:462–466

    Article  Google Scholar 

  • Zhao W, Zhang M, Ai Z, Yang Y, Xi H, Shi Q, Xu X, Shi H (2014) Synthesis, characterization, and photocatalytic properties of SnO2/rutile TiO2/anatase TiO2 heterojunctions modified by Pt. J Phys Chem C 118:23117–23125

    Article  Google Scholar 

  • Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Article  Google Scholar 

  • Zhou X, Wan LJ, Guo YG (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support from the National Natural Science Foundation of China (Grant Nos. 11275121, 21471096, and 21371116), and Program for Innovative Research Team in University (IRT13078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijiao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Gao, R., Tao, H. et al. Intergrown SnO2–TiO2@graphene ternary composite as high-performance lithium-ion battery anodes. J Nanopart Res 18, 307 (2016). https://doi.org/10.1007/s11051-016-3617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3617-5

Keywords

Navigation