Skip to main content
Log in

A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberto G, Caputo G, Viscardi G, Coluccia S, Martra G (2012) Molecular engineering of hybrid dye–silica fluorescent nanoparticles: influence of the dye structure on the distribution of fluorophores and consequent photoemission brightness. Chem Mater 24:2792–2801

    Article  Google Scholar 

  • Al-Rawi M, Diabaté S, Weiss C (2011) Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Arch Toxicol 85:813–826

    Article  Google Scholar 

  • Auger A, Samuel J, Poncelet O, Raccurt O (2011) A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles. Nanoscale Res Lett 6:1–12

    Article  Google Scholar 

  • Bagwe R, Yang C, Hilliard L, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20:8336–8342

    Article  Google Scholar 

  • Bass J, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem Mater 19:4349–4356

    Article  Google Scholar 

  • Bäumler W, Penzkofer A (1990) Fluorescence spectroscopic analysis of N and P isomers of DODCI. Chem Phys 140:75–97

    Article  Google Scholar 

  • Blechinger J, Herrmann R, Kiener D, García-García F, Scheu C, Reller A, Bräuchle C (2010) Perylene-labeled silica nanoparticles: synthesis and characterization of three novel silica nanoparticle species for live-cell imaging. Small 6:2427–2435

    Article  Google Scholar 

  • Canton C, Riccò R, Marinello F, Carmignato S, Enrichi F (2011) Modified Stöber synthesis of highly luminescent dye-doped silica nanoparticles. J Nanopart Res 13:4349–4356

    Article  Google Scholar 

  • Costa C, Leite C, Galembeck F (2003) Size dependence of Stöber silica nanoparticle microchemistry. J Phys Chem B 107:4747–4755

    Article  Google Scholar 

  • Costa C, Valadares L, Galembeck F (2007) Stöber silica particle size effect on the hardness and brittleness of silica monoliths. Colloids Surf A 302:371–376

    Article  Google Scholar 

  • Daberkow T, Meder F, Treccani L, Schowalter M, Rosenauer A, Rezwan K (2012) Fluorescence labeling of colloidal core–shell particles with defined isoelectric points for in vitro studies. Acta Biomater 8:1–8

    Google Scholar 

  • Ethiraj A, Hebalkar N, Kharrazi S, Urban J, Sainkar S, Kulkarni S (2005) Photoluminescent core-shell particles of organic dye in silica. J Lumin 114:15–23

    Article  Google Scholar 

  • Finnie K, Bartlett J, Barbé C, Kong L (2007) Formation of silica nanoparticles in microemulsions. Langmuir 23:3017–3024

    Article  Google Scholar 

  • Finnie K, Waller D, Perret F, Krause-Heuer A, Lin H, Hanna J, Barbe C (2009) Biodegradability of sol–gel silica microparticles for drug delivery. Sol-Gel Sci Technol 49:12–18

    Article  Google Scholar 

  • Fouilloux S, Tache O, Spalla O, Thill A (2011) Nucleation of silica nanoparticles measured in situ during controlled supersaturation increase. Restructuring toward a monodisperse nonspherical shape. Langmuir 27:12304–12311

    Article  Google Scholar 

  • Fuller J, Zugates G, Ferreira L, Ow H, Nguyen N, Wiesner U, Langer R (2008) Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials 29:1526–1532

    Article  Google Scholar 

  • Gao F, Tang L, Dai L, Wang L (2007) A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochim Acta Part A 67:517–521

    Article  Google Scholar 

  • Gao X, He J, Deng L, Cao H (2009) Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles. Opt Mater 31:1715–1719

    Article  Google Scholar 

  • Ha S-W, Camalier C-E, Beck GR Jr, Lee J-K (2009) New method to prepare very stable and biocompatible fluorescent silica nanoparticles Chem Commun 20:2881–2883

    Google Scholar 

  • Imhof A, Megens M, Engelberts J, de Lang D, Sprik R, Vos W (1999) Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres. J Phys Chem B 103:1408–1415

    Article  Google Scholar 

  • Liang J, Xue Z, Xu J, Li J, Zhang H, Yang W (2013) Highly efficient incorporation of amino-reactive dyes into silica particles by a multi-step approach. Colloids Surf A 426:33–38

    Article  Google Scholar 

  • Liong M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896

    Article  Google Scholar 

  • Mahon E, Hristov D, Dawson K (2012) Stabilising fluorescent silica nanoparticles against dissolution effects for biological studies. Chem Commun 48:7970–7972

    Article  Google Scholar 

  • Montalti M et al (2006) Size effect on the fluorescence properties of dansyl-doped silica nanoparticles. Langmuir 22:5877–5881

    Article  Google Scholar 

  • Nakamura M, Shono M, Ishimura K (2007) Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles. Anal Chem 79:6507–6514

    Article  Google Scholar 

  • Nan A, Bai X, Son S, Lee S, Ghandehari H (2008) Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett 8:2150–2154

    Article  Google Scholar 

  • Rampazzo E et al (2010) Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores. J Phys Chem B 114:14605–14613

    Article  Google Scholar 

  • Salvati A, Åberg C, dos Santos T, Varela J, Pinto P, Lynch I, Dawson K (2011) Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine 7:1–9

    Article  Google Scholar 

  • Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    Article  Google Scholar 

  • Shahabi S, Treccani L, Dringen R, Rezwan K (2015a) Dual fluorophore doped silica nanoparticles for cellular localization studies in multiple stained cells. Acta Biomater 14:208–216

    Article  Google Scholar 

  • Shahabi S, Treccani L, Dringen R, Rezwan K (2015b) Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: effects of serum. ACS Appl Mater Interfaces 7:13821–13833

    Article  Google Scholar 

  • Shahabi S, Treccani L, Rezwan K (2015c) Amino acid-catalyzed seed regrowth synthesis of photostable high fluorescent silica nanoparticles with tunable sizes for intracellular studies. J Nanopart Res 17:1–15

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  • van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8:2921–2931

    Article  Google Scholar 

  • van Blaaderen A, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. Colloid Interface Sci 156:1–18

    Article  Google Scholar 

  • Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T (2011) Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J Colloid Interface Sci 360:1–7

    Article  Google Scholar 

  • Yokoi T (2012) Syntheses and applications of well-ordered porous silicas by using anionic surfactants and basic amino acids. J Jpn Petrol Inst 55:13–26

    Article  Google Scholar 

  • Yokoi T et al (2009) Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chem Mater 21:3719–3729

    Article  Google Scholar 

  • Zhao X, Bagwe R, Tan W (2004) Development of organic-dye- doped silica nanoparticles in a reverse microemulsion. Adv Mater 16:173–176

    Article  Google Scholar 

Download references

Acknowledgments

We greatly thank Dr. Jan Köser of Zentrale Analytik, University of Bremen for DLS measurements. This work was supported by the European Research Council within the SIRG Project “BiocerEng” Project No. 205509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Treccani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabi, S., Treccani, L. & Rezwan, K. A comparative study of three different synthesis routes for hydrophilic fluorophore-doped silica nanoparticles. J Nanopart Res 18, 28 (2016). https://doi.org/10.1007/s11051-016-3334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3334-0

Keywords

Navigation