Skip to main content

Advertisement

Log in

Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Caruso RA, Susha A, Caruso F (2001) Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem Mater 13(2):400–409. doi:10.1021/cm001175a

    Article  Google Scholar 

  • Chae WS, Shin HW, Lee ES, Shin EJ, Jung JS, Kim YR (2005) Excitation dynamics in anisotropic nanostructures of star-shaped CdS. J Phys Chem B 109(13):6204–6209. doi:10.1021/jp044402v

    Article  Google Scholar 

  • Chen F, Cao Y, Jia D, Niu X (2013) Facile synthesis of CdS nanoparticles photocatalyst with high performance. Ceram Int 39(2):1511–1517. doi:10.1016/j.ceramint.2012.07.098

    Article  Google Scholar 

  • Cheng X, Chen M, Wu L, Gu G (2006) Novel and facile method for the preparation of monodispersed titania hollow spheres. Langmuir 22(8):3858–3863. doi:10.1021/la0534221

    Article  Google Scholar 

  • Dai Z, Zhang J, Bao J, Huang X, Mo X (2007) Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. J Mater Chem 17(11):1087–1093. doi:10.1039/B614203F

    Article  Google Scholar 

  • Fu X, Lin L, Wang D, Hu Z, Song C (2005) Preparation of CdS hollow spheres using poly-(styrene–acrylic acid) latex particles as template. Colloids Surf A 262:216–219. doi:10.1016/j.colsurfa.2005.04.037

    Article  Google Scholar 

  • Gaur R, Jeevanandam P (2015) Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea) cadmium chloride in various solvents. J Nanopart Res 17(3):1–13. doi:10.1007/s11051-015-2961-1

    Article  Google Scholar 

  • Gong Q, Qian X, Zhou P, Yu X, Du W, Xu S (2007) In situ sacrificial template approach to the synthesis of octahedral CdS microcages. J Phys Chem C 111(5):1935–1940. doi:10.1021/jp066752i

    Article  Google Scholar 

  • Han S, Hu L, Gao N, Al-Ghamdi AA, Fang X (2014) Efficient self-assembly synthesis of uniform CdS spherical nanoparticles–Au nanoparticles hybrids with enhanced photoactivity. Adv Funct Mater 24(24):3725–3733. doi:10.1002/adfm.201400012

    Article  Google Scholar 

  • Hu B-Y, Jing ZZ, Huang JF, Yun J (2012) Synthesis of hierarchical hollow spherical CdS nanostructures by microwave hydrothermal process. Trans Nonferr Met Soc 22(10):s89–s94. doi:10.1016/S1003-6326(12)61689-6

    Article  Google Scholar 

  • Huang Y, Sun F, Wu T, Wu Q, Huang Z, Su H, Zhang Z (2011) Photochemical preparation of CdS hollow microspheres at room temperature and their use in visible-light photocatalysis. J Solid State Chem 184(3):644–648. doi:10.1016/j.jssc.2011.01.012

    Article  Google Scholar 

  • Ishibashi K-i, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2(3):207–210. doi:10.1016/S1388-2481(00)00006-0

    Article  Google Scholar 

  • Jiang X, Xie Y, Lu J, Zhu L, He W, Liu X (2011) Low temperature interface-mineralizing route to hollow CuS, CdS, and NiS spheres. Can J Chem 80(3):263–268. doi:10.1139/V02-020

  • Kim Y, Kim HB, Jang DJ (2014) Facile microwave fabrication of CdS nanobubbles with highly efficient photocatalytic performances. J Mater Chem A 2(16):5791–5799. doi:10.1039/c3ta15177h

    Article  Google Scholar 

  • Koida T, Chichibu SF, Uedono A, Tsukazaki A, Kawasaki M, Sota T, Segawa Y, Koinuma H (2003) Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO. Appl Phys Lett 82(4):532–534. doi:10.1063/1.1540220

    Article  Google Scholar 

  • Li S, Zheng JT, Yang WL, Zhao YC (2007) A new synthesis process and characterization of three-dimensionally ordered macroporous ZrO2. Mater Lett 61(26):4784–4786. doi:10.1016/j.matlet.2007.03.033

    Article  Google Scholar 

  • Li X, Gao Y, Yu L, Zheng L (2010) Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal process and their application in photocatalysis. J Solid State Chem 183(6):1423–1432. doi:10.1016/j.jssc.2010.04.001

    Article  Google Scholar 

  • Li C, Han L, Liu R, Li H, Zhang S, Zhang G (2012) Controlled synthesis of CdS micro/nano leaves with (0001) facets exposed: enhanced photocatalytic activity toward hydrogen evolution. J Mater Chem 22(45):23815–23820. doi:10.1039/C2JM35415B

    Article  Google Scholar 

  • Lin G, Zheng J, Xu R (2008) Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. J Phys Chem C 112(19):7363–7370. doi:10.1021/jp8006969

    Article  Google Scholar 

  • Ling T, Kulinich SA, Zhu ZL, Qiao SZ, Du XW (2014) Highly conductive CdS inverse opals for photochemical solar cells. Adv Funct Mater 24(5):707–715. doi:10.1002/adfm.201300734

    Article  Google Scholar 

  • Liu X, Fang Z, Zhang X, Zhang W, Wei X, Geng B (2008) Preparation and characterization of Fe3O4/CdS nanocomposites and their use as recyclable photocatalysts. Cryst Growth Des 9(1):197–202. doi:10.1021/cg800213w

    Article  Google Scholar 

  • Liu Y, Goebl J, Yin Y (2012) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610–2653. doi:10.1039/c2cs35369e

    Article  Google Scholar 

  • Luo M, Liu Y, Hu J, Li J, Liu J, Richards RM (2012) General strategy for one-pot synthesis of metal sulfide hollow spheres with enhanced photocatalytic activity. Appl Catal B 125:180–188. doi:10.1016/j.apcatb.2012.05.041

    Article  Google Scholar 

  • Ma X, Zhang X, Gong J, Wang N, Fan B, Qu L (2011) Synthesis and growth mechanism of hollow microcorn-like CdS crystal. CrystEngComm 14(1):246–250. doi:10.1039/c1ce05968h

    Article  Google Scholar 

  • Miao JJ, Jiang LP, Liu C, Zhu JM, Zhu JJ (2007) General sacrificial template method for the synthesis of cadmium chalcogenide hollow structures. Inorg Chem 46(14):5673–5677. doi:10.1021/ic700404n

    Article  Google Scholar 

  • Onwudiwe DC, Krüger TPJ, Oluwatobi OS, Strydom CA (2014) Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system. Appl Surf Sci 290(3):18–26. doi:10.1016/j.apsusc.2013.10.165

    Article  Google Scholar 

  • Pan B, Xie Y, Zhang S, Lu L, Zhang W (2012) Visible light photocatalytic degradation of RhB by polymer–CdS nanocomposites: role of the host functional groups. ACS Appl Mater Interfaces 4(8):3938–3943. doi:10.1021/am300769b

    Article  Google Scholar 

  • Poulose AC, Veeranarayanan S, Yoshida Y, Maekawa T, Kumar DS (2012) Rapid synthesis of triangular CdS nanocrystals without any trap emission. J Nanopart Res 14(4):1–10. doi:10.1007/s11051-012-0789-5

    Article  Google Scholar 

  • Rafati AA, Borujeni ARA, Najafi M, Bagheri A (2011) Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization. Mater Charact 62(1):94–98. doi:10.1016/j.matchar.2010.11.003

    Article  Google Scholar 

  • Rawalekar S, Mokari T (2013) Rational design of hybrid nanostructures for advanced photocatalysis. Adv Energy Mater 3(1):12–27. doi:10.1002/aenm.201200511

    Article  Google Scholar 

  • Rengaraj S, Ferancova A, Jee SH, Venkataraj S, Kim Y, Labuda J, Sillanp M (2010) Physical and electrochemical characterization of CdS hollow microspheres prepared by a novel template free solution phase method. Electrochim Acta 56(1):501–509. doi:10.1016/j.electacta.2010.09.019

    Article  Google Scholar 

  • Schmidt J (2003) Temperature- and injection-dependent lifetime spectroscopy for the characterization of defect centers in semiconductors. Appl Phys Lett 82(13):2178–2180. doi:10.1063/1.1563830

    Article  Google Scholar 

  • Shao M, Wang D, Hu B, Yu G, Qian Y (2003) Self-template route to CdS hollow spheres and in situ conversion to CdS/Ag2S composite materials. J Cryst Growth 249:549–552. doi:10.1016/S0022-0248(02)02390-4

    Article  Google Scholar 

  • Shen L, Bao N, Prevelige PE, Gupta A (2010) Escherichia coli bacteria-templated synthesis of nanoporous cadmium sulfide hollow microrods for efficient photocatalytic hydrogen production. J Mater Chem C 114(6):2551–2559. doi:10.1021/jp910842f

    Google Scholar 

  • Siva C, Ramya R, Baraneedharan P, Nehru K, Sivakumar M (2014) Fabrication, physiochemical and optoelectronic characterization of SiO2/CdS core–shell nanostructures. J Mater Sci Mater Electron 25(3):1202–1208. doi:10.1007/s10854-014-1710-z

    Article  Google Scholar 

  • Wang Y, Wang G, Wang H, Tang C, Jiang Z, Zhang L (2007) Microwave-assisted fabrication of PS@CdS core–shell nanostructures and CdS hollow spheres. Chem Lett 36(5):674. doi:10.1246/cl.2007.674

    Article  Google Scholar 

  • Wang H, Xu Q, Zheng X, Han W, Zheng J, Jiang B, Xue Q, Wu M (2014) Synthesis mechanism, enhanced visible-light-photocatalytic properties, and photogenerated hydroxyl radicals of PS@CdS core–shell nanohybrids. J Nanopart Res 16(12):1–15. doi:10.1007/s11051-014-2794-3

    Google Scholar 

  • Wu W, Rui L, Shen L, Liang R, Yuan R, Ling W (2013) Mechanistic insight into the photocatalytic hydrogenation of 4-nitroaniline over band-gap-tunable CdS photocatalysts. PCCP 15(44):19422–19426. doi:10.1039/c3cp53195c

    Article  Google Scholar 

  • Xiong J, Wu W, Liu Y, Shen L, Wu L (2015) Fabrication of hierarchical CdS nanosphere via one-pot process for photocatalytic water splitting. J Nanopart Res 17:1–10. doi:10.1007/s11051-015-2861-4

    Article  Google Scholar 

  • Xu X, Hu L, Gao N, Liu S, Wageh S, Al-Ghamdi AA, Alshahrie A, Fang X (2015) Controlled growth from ZnS nanoparticles to ZnS–CdS nanoparticle hybrids with enhanced photoactivity. Adv Funct Mater 25(3):445–454. doi:10.1002/adfm.201403065

    Article  Google Scholar 

  • Yu J, Yu Y, Cheng B (2012) Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods. RSC Adv 2(31):11829–11835. doi:10.1039/c2ra22019a

    Article  Google Scholar 

  • Zhu J, Yang D, Geng J, Chen D, Jiang Z (2008) Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. J Nanopart Res 10(5):729–736. doi:10.1007/s11051-007-9301-z

    Article  Google Scholar 

  • Zhuang J, Dai W, Tian Q, Li Z, Xie L, Wang J, Ping L, Shi X, Wang D (2010) Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir 26(12):9686–9694. doi:10.1021/la100302m

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 21376268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Zheng or Jingtang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jin, T., Zheng, X. et al. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. J Nanopart Res 18, 339 (2016). https://doi.org/10.1007/s11051-015-3255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3255-3

Keywords

Navigation