Skip to main content
Log in

Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL−1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelsaid MA, Pillai BA, Matragoon S, Prakash R, Al-Shabrawey M et al (2010) Early intervention of tyrosine nitration prevents vaso-obliteration and neovascularization in ischemic retinopathy. J Pharmacol Exp Ther 332(1):125–134

    Article  Google Scholar 

  • Afergan E, Ben David M, Epstein H, Koroukhov N, Gilhar D et al (2010) Liposomal simvastatin attenuates neointimal hyperplasia in rats. AAPS J 12(2):181–187

    Article  Google Scholar 

  • Anderson TJ (2003) Nitric oxide, atherosclerosis and the clinical relevance of endothelial dysfunction. Heart Fail Rev 8:71–86

    Article  Google Scholar 

  • Bana L, Minniti S, Salvati E, Sesana S, Zambelli V et al (2014) Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine 10(7):1583–1590

    Article  Google Scholar 

  • Beauchamp MH, Sennlaub F, Speranza G, Gobeil F Jr, Checchin D et al (2004) Redoxdependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radic Biol Med 37:1885–1894

    Article  Google Scholar 

  • Bulbarelli A, Lonati E, Brambilla A, Orlando A, Cazzaniga E et al (2012) Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation. Mol Cell Neurosci 49(4):415–422

    Article  Google Scholar 

  • Choi J, Zhang Q, Reipa V, Wang NS, Stratmeyer ME et al (2009) Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages. J Appl Toxicol 29(1):52–60

    Article  Google Scholar 

  • Choi YH, Jin GY, Li GZ, Yan GH (2011) Cornuside suppresses lipopolysaccharide-induced inflammatory mediators by inhibiting nuclear factor-kappa B activation in RAW 264.7 macrophages. Biol Pharm Bull 34(7):959–966

    Article  Google Scholar 

  • Cohen-Sela E, Dangoor D, Epstein H, Gati I, Danenberg HD et al (2006) Nanospheres of a bisphosphonate attenuate intimal hyperplasia. J Nanosci Nanotechnol 6(9–10):3226–3234

    Article  Google Scholar 

  • Colombo M, Mazzucchelli S, Montenegro JM, Galbiati E, Corsi F et al (2012a) Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small 8(10):1492–1497

    Article  Google Scholar 

  • Colombo M, Sommaruga S, Mazzucchelli S, Polito L, Verderio P et al (2012b) Site-specific conjugation of scFv antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-nitrone cycloaddition. Angew Chem Int Ed 51:496–499

    Article  Google Scholar 

  • Dan M, Bae Y, Pittman TA, Yokel RA (2015) Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models. Pharm Res 32(5):1615–1625

    Article  Google Scholar 

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Article  Google Scholar 

  • Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105–113

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Heath Perspect 114:165–172

    Article  Google Scholar 

  • Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233:250–258

    Article  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11

    Article  Google Scholar 

  • Jantzen F, Könemann S, Wolff B, Barth S, Staudt A et al (2007) Isoprenoid depletion by statins antagonizes cytokine-induced down-regulation of endothelial nitric oxide expression and increases NO synthase activity in human umbilical vein endothelial cells. J Physiol Pharmacol 58(3):503–514

    Google Scholar 

  • Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  Google Scholar 

  • Kowluru RA, Odenbach S (2004) Effect of long-term administration of alphalipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes 53:3233–3238

    Article  Google Scholar 

  • Kowluru RA, Kanwar M, Kennedy A (2007) Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries. Exp Diabetes Res 2007:21976

    Google Scholar 

  • Lawrence T, Willoughby DA, Gilroy DW (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2(10):787–795

    Article  Google Scholar 

  • Li M, Kim HS, Tian L, Yu MK, Jon S et al (2012) Comparison of two ultrasmall superparamagnetic iron oxides on cyto-toxicity and MR imaging of tumors. Theranostics 2(1):76–85

    Article  Google Scholar 

  • Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig 117(5):1175–1183

    Article  Google Scholar 

  • Liong M, Shao H, Haun JB, Lee H, Weissleder R (2010) Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications. Adv Mater 22:5168–5172

    Article  Google Scholar 

  • Lovren F, Pan Y, Shuklap P, Quan A, Teoh H et al (2009) Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: translational implications for atherosclerosis. Am J Physiol Endocrinol Metab 296(6):E1440–E1449

    Article  Google Scholar 

  • Lucarelli M, Gatti AM, Savarino G, Quattroni P, Martinelli L et al (2004) Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytokine Netw 15:339–346

    Google Scholar 

  • Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336(2):510–518

    Article  Google Scholar 

  • Mazzucchelli S, Colombo M, Verderio P, Rozek E, Andreata F et al (2013) Orientation-controlled conjugation of haloalkane dehalogenase fused homing peptides to multifunctional nanoparticles for the specific recognition of cancer cells. Angew Chem Int Ed Engl 52(11):3121–3125

    Article  Google Scholar 

  • Mitchell LA, Gao J, Vander Wal R, Gigliotti A et al (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214

    Article  Google Scholar 

  • Nishikawa T, Iwakiri N, Kaneko Y, Taguchi A, Fukushima K et al (2009) Nitric oxide release in human aortic endothelial cells mediated by delivery of amphiphilic polysiloxane nanoparticles to caveolae. Biomacromolecules 10:2074–2085

    Article  Google Scholar 

  • Orlando A, Re F, Sesana S, Rivolta I, Panariti A et al (2013) Effect of nanoparticles binding β-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages. Int J Nanomed 8:1335–1347

    Article  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  Google Scholar 

  • Panariti A, Lettiero B, Alexandrescu R, Collini M, Sironi L et al (2013) Dynamic investigation of interaction of biocompatible iron oxide nanoparticles with epithelial cells for biomedical applications. J Biomed Nanotechnnol 9(9):1556–1569

    Article  Google Scholar 

  • Piazza M, Colombo M, Zanoni I, Granucci F, Tortora P et al (2011) Uniform LPS-loaded magnetic nanoparticles for the investigation of LPS/TLR4 signaling. Angew Chem Int 50:622–626

    Article  Google Scholar 

  • Romero-Calvo I, Ocón B, Martínez-Moya P, Suárez MD, Zarzuelo A et al (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401(2):318–320

    Article  Google Scholar 

  • Rosenkranz-Weiss P, Sessa WC, Milstien S, Kaufman S, Watson CA et al (1994) Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest 93:2236–2243

    Article  Google Scholar 

  • Sennlaub F, Courtois Y, Goureau O (2002) Inducible nitric oxide synthase mediates retinal apoptosis in ischemic proliferative retinopathy. J Neurosci 22:3987–3993

    Google Scholar 

  • Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV et al (2014) Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomed 9:273–287

    Article  Google Scholar 

  • Simoni AR, Garcia MP, Azevedo RB, Chaves SB, Lacava ZG et al (2008) Evaluation of the binding properties of maghemite nanoparticle surface-coated with meso-2-3- dimercaptosuccinic acid to serum albumin. J Nanosci Nanotechnol 8(11):5813–5817

    Article  Google Scholar 

  • Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC et al (2011) Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465

    Article  Google Scholar 

  • Ulivi V, Lenti M, Gentili C, Marcolongo G, Cancedda R et al (2011) Anti-inflammatory activity of monogalactosyldiacylglycerol in human articular cartilage in vitro: activation of an anti-inflammatory cyclooxygenase-2 (COX-2) pathway. Arthritis Res Ther 13(3):R92

    Article  Google Scholar 

  • Van Tiel ST, Wielopolski PA, Houston GC, Krestin GP, Bernsen MR (2010) Variations in labeling protocol influence incorporation, distribution and retention of iron oxide nanoparticles into human umbilical vein endothelial cells. Contrast Media Mol Imaging 5(5):247–257

    Article  Google Scholar 

  • Waldman WJ, Kristovich R, Knight DA, Dutta PK (2007) Inflammatory properties of iron-containing carbon nanoparticles. Chem Res Toxicol 20:1149–1154

    Article  Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  Google Scholar 

  • Weksler B, Romero IA, Couraud PO (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10(1):16

    Article  Google Scholar 

  • Wittenborn TR, Larsen EK, Nielsen T, Rydtoft LM, Hansen L et al (2014) Accumulation of nano-sized particles in a murine model of angiogenesis. Biochem Biophys Res Commun 443(2):470–476

    Article  Google Scholar 

  • Wu X, Tan Y, Mao H, Zhang M (2010) Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomed 9(5):385–399

    Article  Google Scholar 

  • Xiao N, Gu W, Wang H, Deng Y, Shi X et al (2014) T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J Colloid Interface Sci 417:159–165

    Article  Google Scholar 

  • Zhu MT, Wang B, Wang Y, Yuan L, Wang HJ et al (2011) Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett 203(2):162–171

    Article  Google Scholar 

Download references

Acknowledgments

The authors report no conflict of interest. The authors are the sole responsible for the content and writing of the paper. This work was supported by grants from FAR 2010, FAR 2011, and “The MULAN Project” from Cariplo Foundation (Grant No. 2011-2096). We thank Pierre-Olivier Couraud for providing the hCMEC/D3 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Cazzaniga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2015_3148_MOESM1_ESM.eps

Supplementary material 1 (EPS 6039 kb) HUVECs and macrophages RAW264.7 viability after PEG-IONP treatment. HUVECs (A) and macrophages RAW264.7 (B) were incubated with different concentrations (20/50/100 µg mL–1) of PEG-IONP for 1 and 24 h and the mitochondrial activity was determined by MTT assay. The results are reported as percentage respect to control (untreated cells). Data are means ± S.E. of three separate experiments performed in triplicate. The results were compared by Student’s t-test. **=p<0.01; cnt=untreated cells. See text for abbreviations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlando, A., Colombo, M., Prosperi, D. et al. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages. J Nanopart Res 17, 351 (2015). https://doi.org/10.1007/s11051-015-3148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3148-5

Keywords

Navigation